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A new implementation of restarted Krylov subspace methods for evaluating
f(A)b for a function f , a matrix A and a vector b is proposed. In contrast
to an implementation proposed previously, it requires constant work and
constant storage space per restart cycle. The convergence behavior of this
scheme is discussed and a new stopping criterion based on an error indicator
is given. The performance of the implementation is illustrated for three
parabolic initial value problems, requiring the evaluation of exp(A)b.

1 Introduction

The interplay of complex approximation theory and matrix computations has long been,
and still is, a recurring theme in the work of Richard Varga. The subject of this paper is
an instance where this interplay is fundamental, namely the computation of the vector

f(A)b (1)

given a matrix A ∈ Cn×n, a vector b ∈ Cn of unit norm and a function f analytic in a
neighborhood of the spectrum Λ(A) of A. In particular, we shall find that the successful
implementation of a technique which two of the authors recently proposed [6] rests on
pioneering work of Richard Varga [3] from the late 1960s.
∗This work was partially supported by the Deutsche Forschungsgemeinschaft.
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The evaluation of f(A)b is a common task in scientific computing, and the most
familiar case is surely that of the exponential function f(λ) = exp(λ), which occurs,
e.g., in connection with the linear initial value problem

u ′(t) = Au(t), t > 0, u(0) = u0, (2)

with solution exp(tA)u0. Initial value problems such as (2) result naturally from the
method of lines discretization of parabolic partial differential operators. Such discretiz-
tions as well as the construction of time-stepping schemes based on Padé or Chebyshev
rational approximation were among the subjects of Richard Varga’s earlier work [22].

We are concerned with the situation where A is large and either sparse or structured,
such that matrix-vector products with A can be carried out inexpensively, whereas first
forming f(A) and then multiplying with b cannot. Here Krylov subspace approxima-
tions of (1) have become popular (cf. [4, 7, 12]) and, with regard to solving initial value
problems, have had a large impact on so-called exponential integrators, in which evalu-
ations of the exponential function applied to the Jacobian are incorporated directly into
time-stepping schemes (cf. [13]).

Krylov subspace approximations of (1) are based on an Arnoldi-like decomposition

AVm = Vm+1H̃m = VmHm + ηm+1,mvm+1e
>
m (3)

in which the columns of Vm form an ascending basis of the Krylov space

Km(A, b) := span{b, Ab, . . . , Am−1b},

H̃m := [ηi,j ] is an (m+1)×m upper Hessenberg matrix, Hm := [Im O]H̃m and em denotes
the m-th unit coordinate vector in Rm. In the most common situation, (3) is a proper
Arnoldi decomposition, i.e., the basis sequence {vm} consists of orthonormal vectors, as
generated by the Arnoldi process, which reduces to the Hermitian Lanczos process when
A is Hermitian. In this case Hm is Hermitian tridiagonal. More general Arnoldi-like
decompositions arise in restarted Arnoldi schemes, in which the basis vectors are only
block orthogonal, or when non-orthogonalizing basis generation schemes are used (see
the discussion in [6]). For an orthonormal basis sequence the Arnoldi approximation of
(1) is then given by

fm := Vmf(Hm)V H
m b = Vmf(Hm)e1, (4)

where e1 denotes the first unit coordinate vector in Rm. There are (at least) three ways
of motivating the approximation (4) (see [11]). One is as a subspace approximation of
(1), since for a proper Arnoldi decomposition (3) the Hessenberg matrix Hm represents
the orthogonal section of A onto Km(A, b), and in this sense f(Hm) an approximation
of the action of f(A) on this space. Alternatively, if Γ is a contour containing Λ(A) in
its interior int Γ and if f is analytic in the closure int Γ, we have

fm = Vmf(Hm)V H
m b =

1
2πi

∫
Γ

f(λ)Vm(λI −Hm)−1V H
m b dλ

≈ 1
2πi

∫
Γ

f(λ)(λI −A)−1b dλ = f(A)b,
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which characterizes fm as the Galerkin approximation of the resolvent integral repre-
sentation of (1). Finally, and this is the interpretation closest to the method proposed
below, it can be shown that (4) can be written as

fm = q(A)b,

where q ∈ Pm−1 is a polynomial of degree m − 1 which interpolates f in the Hermite
sense at the eigenvalues of Hm, i.e., at the Ritz values of A with respect to Km(A, b).

The evaluation of (4) requires that the complete basis of Km(A, b) be available, which
can be prohibitive for large A and large values of m. One remedy restricted to the Her-
mitian case, in which the vm can be generated by the three-term Lanczos-recurrence, is
to compute the Hessenberg matrix Hm in a first pass to subsequently determine the coef-
ficient vector f(Hm)e1, followed by a regeneration of the basis vectors v1, v2, . . . , vm in a
second pass to form the linear combination (4), which, while feasible, seems nonetheless
unelegant.

This was the motivation for the restarting algorithm proposed in [6], which involves
Arnoldi decompositions of a fixed length m and generates a sequence of approximations
{f̂k}k∈N with f̂k ∈ Kkm(A, b). The implementation proposed in [6], however, suffered
from the deficiency that, although not requiring the storage of more than m basis vectors
at a time, the coordinate calculations required the evaluation of f for a block Hessenberg
matrix of size km, resulting in computational work which grows with k. In what follows,
we introduce a new implementation for which the computational expense as well as the
storage requirements are the same for each cycle. In addition, we propose a stopping
criterion based on an error indicator, discuss the convergence behavior of the new imple-
mentation vs. that proposed in [6], and illustrate their performance in some numerical
examples.

2 The Restarted Krylov Subspace Algorithm for Matrix
Functions

The restarted Krylov subspace algorithm proposed in [6] proceeds by repeatedly generat-
ing a basis of Krylov spaces of fixed dimension m, updating the most recent approxima-
tion to (1), and then discarding all but the last basis vector, which is subsequently used
as the initial vector for the next Krylov space. Although any procedure which generates
a nested basis of a Krylov space can be used, we restrict ourselves to the Arnoldi process
in the following.∗ We recall the basic restart step using two Arnoldi decompositions

AV1 = V1H1 + η2vm+1e
>
m, (5a)

AV2 = V2H2 + η3v2m+1e
>
m, (5b)

∗When we use terminology such as Arnoldi decomposition, Arnoldi approximation, Arnoldi algorithm,
etc. in the context of a Hermitian matrix A, we tacitly assume that computations are carried out
with the Hermitian Lanczos process.
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in which the columns of V1 and V2 are orthonormal bases of Km(A, v1) and Km(A, vm+1),
respectively, and H1 and H2 are unreduced upper Hessenberg matrices. The columns of
V̂2 := [V1 V2] thus form a basis of K2m(A, v1), and we combine the two decompositions
in (5) as

AV̂2 = V̂2Ĥ2 + η3v2m+1e
>
2m, (6)

where

Ĥ2 :=
[
H1 O
E2 H2

]
, E2 := η2e1e

>
m.

Note that, since the columns of V̂2 are only blockwise orthonormal, we refer to (6) as
an Arnoldi-like decomposition. The restarting scheme computes the Krylov subspace
approximation

f̂2 := V̂2f(Ĥ2)e1,

associated with the decomposition (6).†

Due to the block lower triangular structure of Ĥ2, the approximation f̂2 has the form

f̂2 = V1f(H1)e1 + V2F2,1e1 = f̂1 + V2F2,1e1,

in which f̂1 denotes the approximation associated with the first decomposition (5a) and
the m×m matrix F2,1 is defined by

f(Ĥ2) =
[
f(H1) O
F2,1 f(H2)

]
.

If F2,1, or rather its first column, can be computed, then only f̂1 needs to be stored from
the first cycle of the algorithm, and V1 can be discarded after computing f̂1.

The result of k cycles of this restarting scheme is the Krylov subspace approximation
associated with the decomposition

AV̂k = V̂kĤk + ηk+1vkm+1e
>
km, (7)

where V̂k := [V1 V2 · · · Vk] ∈ Cn×km,

Ĥk :=


H1

E2 H2

. . . . . .
Ek Hk

 ∈ Ckm×km, Ej := ηje1e
>
m ∈ Rm×m, j = 2, . . . , k,

in which we have collected the quantities of the k Arnoldi decompositions

AVj = VjHj + ηj+1vjm+1e
>
m, j = 1, 2, . . . , k.

†From now on e1 denotes a first unit coordinate vector whose dimension is dictated by the context,
whereas, for j ≥ 2, ej ∈ Rj shall denote the j-th unit vector.

4



Setting

F̂k := f(Ĥk) =


F1,1

F2,1 F2,2
...

...
. . .

Fk,1 Fk,2 . . . Fk,k

 , where Fj,j = f(Hj), j = 1, 2, . . . , k,

the approximation after k restart cycles is given by

f̂k := V̂kf(Ĥk)e1 = [V1 V2 · · · Vk]F̂ke1 =
k∑

j=1

VjFj,1e1 = f̂k−1 + VkFk,1e1. (8)

3 Implementation

In this section we discuss possible implementations of the basic restarting scheme (8).
The crucial issue is the fast and stable computation of the coefficient vector Fk,1e1.

3.1 Previously Explored Strategies

There are several possible ways of computing the update (8). In view of the interpolation
properties of the Krylov subspace approximation, each additional restart cycle interpo-
lates the function f at m additional nodes, which are the Ritz values of A with respect
to the most recent Krylov space. A natural approach would therefore be a block Newton
type interpolation scheme, which can be carried out by evaluating matrix polynomials
of m×m matrices: It was shown in [6, Theorem 2.6] that the error of a Krylov subspace
approximation (4) with respect to Km(A, b) and an Arnoldi-like decomposition (3) has
the representation

f(A)b − fm = f̃(A)vm+1 (9)

with a “restart function” f̃ := γ∆wmf , in which wm denotes the characteristic polyno-
mial of Hm, γ is the product of the subdiagonal elements of Hm and ηm+1,m, and the
function ∆wmf is defined as

∆wmf :=
f − Iwmf

wm
, (10)

where Iwmf denotes the polynomial of degree m−1 which interpolates f in the Hermite
sense at the zeros of the polynomial wm, i.e., at the Ritz values of A with respect to
Km(A, b). Since the error (9) has exactly the same form as f(A)b with f̃ in place of f ,
one can proceed by computing corrections to f̂1 = fm in the form of Arnoldi approxima-
tions to f̃(A)vm+1. In view of (9) and (10), this results in a corrected approximation
f̂2 = q(A)b, where now q ∈ P2m−1 interpolates f in the Ritz values of A with respect
to Km(A, b) as well as those with respect to Km(A, vm+1). We note that an alternative
expression for the restarted approximations f̂m based on block Newton interpolation for
Hermitian A was given in [14].

In [6], the approach based on repeated block Newton interpolation was found to be
unstable, and instead it was proposed to evaluate the matrix f(Ĥk) in each cycle by
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standard algorithms such as Matlab’s function funm, from which the entries required
for the update (8) can be extracted. The resulting scheme is summarized below as Al-
gorithm 1.

Algorithm 1: Restarted Arnoldi approximation for f(A)b proposed in [6].
Given: A, b, ‖b‖ = 1, f
v1 := b, f̂0 := 0.
for k = 1, 2, . . . until convergence do

Compute Arnoldi decomposition AVk = VkHk + ηk+1vkm+1e
>
m of

Km(A, v(k−1)m+1).
if k = 1 then

Ĥk := H1

else

Ĥk :=

[
Ĥk−1 O

ηke1e
>
(k−1)m Hk

]
.

Update the approximation f̂k := f̂k−1 + Vk[f(Ĥk)e1](k−1)m+1:km.

Although it allows discarding the basis vectors of previous cycles, Algorithm 1 has the
shortcoming that it requires in the k-th cycle the evaluation of f for a matrix of size km.
Despite the fact that, typically, km � n, this can represent substantial computational
effort as k gets large. Moreover, it appears wasteful to compute f(Ĥk) when only the
last m entries of its first column are needed.

An alternative approach for computing f(Ĥk) which promises less work per cycle is
to use a recursive scheme [16]: Comparing blocks in the identity

F̂kĤk = ĤkF̂k

shows that, for j > `,

Fj,`H` −HjFj,` = EjFj−1,` − Fj,`+1E`+1.

Since the diagonal blocks are obtained as Fk,k = f(Hk), this relation allows us to recur-
sively compute the last block row of F̂k by solving the Sylvester equations

XHk−j −HkX = EkFk−1,k−j − Fk,k−j+1Ek−j+1, j = 1, 2, . . . , k − 1, (11)

for X = Fk,k−j . The Sylvester equation (11) is easy to solve since its coefficients
Hk−j and Hk are upper Hessenberg (see [9]). We still, however, have to store Ĥk,
i.e., H1,H2, . . . ,Hk and η2, η3, . . . , ηk. In addition, we need Fk−1,k−j , more precisely,
EkFk−1,k−j , i.e., only the last row of Fk−1,k−j (j = 0, 1, . . . , k− 1) has to be saved in the
previous cycle. Note further that only the first column of Fk,k−j+1 enters the equation
determining Fk,k−j , but we still compute Fk,j (j = k, k− 1, . . . , 1), although only Fk,1e1

is needed, and, most importantly, the above Sylvester equation (11) tends to be severely
ill-conditioned since Hj and Hj−k represent compressions of the same matrix A and thus
their spectra are by no means well separated.
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3.2 Implementation Based on a Rational Approximation to f

Our new implementation of restarting Krylov subspace algorithms for approximating (1)
is based on evaluating r(Ĥk)e1 ≈ f(Ĥk)e1 using a rational approximation (cf. [7, 19])

f(λ) ≈ r(λ) = p(λ) +
N∑

`=1

α`

ω` − λ

to f in partial fraction form with polynomial part p, coefficients α` and poles ω` which
we assume to be simple. In other words, we compute

r(Ĥk)e1 = p(Ĥk)e1 +
N∑

`=1

α`(ω`I − Ĥk)−1e1. (12)

We note that in the most common application f(λ) = exp(λ), Re λ ≤ 0, a polynomial p
of degree zero or one usually suffices.

Evaluating p(Ĥk)e1 for a polynomial p of low degree is straightforward: Letting p(λ) =
π1λ + π0, for example, yields

r̂0 := p(Ĥk)e1 =


(π1H1 + π0I)e1

π2E2e1

0
...
0

 ,

and for higher degrees one can proceed analogously. Evaluating the second expression
in (12) consists of summing the vectors r̂` := α`(ω`I − Ĥk)−1e1, ` = 1, 2 . . . , N , i.e.,
solving the linear systems of equations (ω`I − Ĥk)r̂` = e1. Due to the sparsity pattern
of the right hand side e1 and the block lower triangular form of Ĥk, this can be carried
out recursively as

(ω`I −H1)r`,1 = e1, (ω`I −Hj)r`,j = Ejr`,j−1, j = 2, . . . , k,

where we have partitioned r̂` = [r>`,1, r
>
`,2, . . . , r

>
`,k]

> conformingly with Ĥk. Note that
these are k Hessenberg systems of size m and thus inexpensive to solve. Moreover, in
view of (8), we only require the last block of r(Ĥk)e1, which is obtained as

[O, . . . , O, I] r(Ĥk)e1 = r0,k +
N∑

`=1

α`r`,k,

where r0,k denotes the last block of r̂0.
The resulting algorithm is summarized below as Algorithm 2. (For simplicity, we as-

sume that the polynomial part p of r is the zero polynomial.)
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Algorithm 2: Restarted Arnoldi approximation for f(A)b based on rational ap-
proximation.
Given: A, b, ‖b‖ = 1, f , (α`, ω`)N

`=1

v1 := b, f̂0 := 0
for k = 1, 2, . . . until convergence do

Compute Arnoldi decomposition AVk = VkHk + ηk+1vkm+1e
>
m of

Km(A, v(k−1)m+1).
if k = 1 then

for ` = 1, 2, . . . , N do
Solve (ω`I −Hk)r`,1 = e1

else
for ` = 1, 2, . . . , N do

Solve (ω`I −Hk)r`,k = ηk(e>mr`,k−1)e1

hk :=
∑N

`=1α`r`,k

f̂k := f̂k−1 + Vkhk

In many applications both A and b are real and f has the property that f(λ) = f(λ).
In this case f(A)b is also real and it is natural to approximate this vector using real
arithmetic.

The rational approximation to f is usually also real for real arguments, but its poles
ω` and coefficients α` appear in complex conjugate pairs, say ω`+1 = ω` and α`+1 = α`.
Since all other quantities in the equations (ω`I − Ĥk)r̂` = ê1 are real, we have r̂`+1 = r̂`

and therefore r`+1,j = r`,j for all j = 1, 2, . . . , k. For the quantities entering the update
of f̂k−1, we thus have

α`r`,k + α`+1r`+1,k = α`r`,k + α`r`,k = 2Re(α`r`,k)

and there is no need to solve (ω`+1I−Hk)r`+1,k = Ekr`+1,k−1. Setting r`,j = r
(R)
`,j +ir

(I)
`,j

and ω` = ω
(R)
` + iω

(I)
` , a straightforward calculation shows that(

|ω`|2I − 2ω
(R)
` H1 + H2

1

)
r

(R)
`,1 =

(
ω

(R)
` I −H1

)
e1,

r
(I)
`,1 = 1

ω
(I)
`

([
ω

(R)
` I −H1

]
r

(R)
`,1 − e1

)
,

while for j = 2, 3, . . . , k,(
|ω`|2I − 2ω

(R)
` Hj + H2

j

)
r

(R)
`,j = ω

(I)
` Ejr

(I)
`,j−1 +

(
ω

(R)
` I −Hj

)
Ejr

(R)
`,j−1,

r
(I)
`,j = 1

ω
(I)
`

([
ω

(R)
` I −Hj

]
r

(R)
`,j − Ejr

(R)
`,j−1

)
.

Finally, α`r`,k + α`+1r`+1,k = 2 Re(α`r`,k) = 2
[
Re(α`)r

(R)
`,k − Im(α`)r

(I)
`,k

]
and we have

avoided complex arithmetic.
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To summarize, the two main ingredients of Algorithm 2 for computing f(A)b are
the Arnoldi process (there is no difference to Algorithm 1) and (the partial fraction
decomposition of) a rational function r such that r(Ĥk) ≈ f(Ĥk). In the following we
restrict our attention to the important special case that f is the exponential function
and always choose r as its best uniform rational approximation on (−∞, 0] of type
16 as derived by Richard Varga and co-workers in [3] and [2]. Alternative rational
approximations are described in [21].

4 A Stopping Criterion Based on an Error Indicator

To obtain a practical stopping criterion for our restarting schemes, we develop an error
indicator using an extension of an idea described in [19, Theorem 5.1] (see also [17,
Theorem 3.1]). The approach relies on an interpolation expansion of the approximation
error f(A)b − f̂k obtained by adding a sequence of auxiliary nodes {ϑj} in addition to
the km Ritz values on which the restarted approximation f̂k is based.

Given m̃ complex numbers ϑ1, ϑ2, . . . , ϑem such that f(ϑj) is defined for each j and the
associated nodal polynomials

w0(λ) := 1, wj(λ) := (λ− ϑ1)(λ− ϑ2) · · · (λ− ϑj), j = 1, 2, . . . , m̃,

we denote the associated divided differences of f by

φ0(λ) := f(λ), φj(λ) := [∆wjf ](λ), j = 1, 2, . . . , m̃.

From the interpolation identity

Iwj+1f = Iwjf + wj ∆wjf, j = 0, 1, . . . , m̃− 1,

we see that these obey the recursion

φj(λ) =
φj−1(λ)− φj−1(ϑj)

λ− ϑj
, j = 1, 2, . . . , m̃.

Finally, for 0 ≤ ` ≤ m̃ and 0 ≤ j ≤ m̃ − ` we define ∆j
`f to be the j-th order divided

difference of f with respect to the nodes ϑ`, ϑ`+1, . . . , ϑ`+j , i.e.,

∆j
`f :=

1
2π i

∫
Γ

f(λ)
(λ− ϑ`) · · · (λ− ϑ`+j)

dλ.

Given the Arnoldi-like decomposition (7), we now consider the matrix

Wem := [w0(A)vkm+1, w1(A)vkm+1, . . . , wem−1(A)vkm+1] ∈ Cn×em (13)

and the bidiagonal matrix

Bem :=


ϑ1

1 ϑ2

. . . . . .
1 ϑem

 ∈ C em×em,

9



in terms of which there holds AWem = WemBem + [0, . . . ,0, wem(A)vkm+1]. Together with
(7) we obtain the Arnoldi-like decomposition

A
[
V̂k Wem]

=
[
V̂k Wem]

H̃k + wem(A)vkm+1e
>
km+ em,

where

H̃k =

 Ĥk O

Ẽk Bem
 ∈ C(km+ em)×(km+ em) and Ẽk = ηke1e

>
km ∈ R em×km.

If we now approximate f(A)b by f̃k :=
[
V̂k Wem]

f(H̃k)e1, then the associated error may
be represented as (see [6, Theorem 2.6])

f(A)b − f̃k = f̃(A) wem(A)vkm+1, (14)

where f̃ := γ∆ ewf with w̃ ∈ Pkm+ em the characteristic polynomial of H̃k and γ the
product of the subdiagonal entries of H̃k.

Lemma 4.1. In terms of the notation introduced above, there holds

f(H̃k) =

 f(Ĥk) O

F̃k, em f(Bem)

 , (15)

where

f(Bem) =


f(ϑ1)

∆1
1 f(ϑ2)

...
...

. . .

∆em−1
1 ∆em−2

2 · · · f(ϑem)

 ∈ C em×em (16)

and where F̃k, em ∈ C em×km has the rows

e>j F̃k, em = ηke
>
kmφj(Ĥk), j = 1, 2, . . . , m̃. (17)

Proof. The first assertion (16) was proven in [15]. To show (17) we follow the proof
of Proposition 3.2 in [17]. Note first that comparing the (2,1) blocks in the identity
f(H̃k)H̃k = H̃kf(H̃k) yields

F̃k, emĤk −BemF̃k, em = ηk

[
e1e

>
kmf(Ĥk)− f(Bem)e1e

>
km

]
. (18)

We obtain (17) by induction on j. For j = 1, multiplying by e>1 on both sides of (18)
yields

e>1 F̃k, em(Ĥk − ϑ1I) = ηke
>
km

(
f(Ĥk)− f(ϑ1)I

)
,
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or
e>1 F̃k, em = ηke

>
km

(
f(Ĥk)− f(ϑ1)I

)
(Ĥk − ϑ1I)−1 = ηke

>
kmφ1(Ĥk).

For j > 1, multiplying (18) from the left by e>j leads to

e>j F̃k, em(Ĥk − ϑjI) = e>j−1F̃k, em − ηk∆j−1
1 e>km = ηke

>
km

(
φj−1(Ĥk)− φj−1(ϑj)

)
,

from which (17) follows after multiplying by (Ĥk − ϑjI)−1. Note that we have tacitly
assumed that ϑj 6∈ Λ(Ĥk) for all j. The usual confluent divided difference calculus shows,
however, that the assertion is also valid without this restriction.

With the expression for the columns of F̃k, em given in Lemma 4.1 together with the
definition of Wem (13), we find that

f̃k = V̂kf(Ĥk)e1 + ηk

em∑
j=1

[
e>kmφj(Ĥk)e1

]
wj−1(A)vkm+1.

Together with the error representation (14) we have obtained

Theorem 4.2. The error of the restarted Arnoldi approximation (8) can be expanded
as

f(A)b − V̂kf(Ĥk)e1 = ηk

em∑
j=1

[
e>kmφj(Ĥk)e1

]
wj−1(A)vkm+1 + f̃(A)wem(A)vkm+1. (19)

Remark 4.3. By an obvious modification to a result given in [19, Theorem 5.1] one can
show that the remainder term in (19) may also be written

f̃(A)wem(A)vkm+1 = wem(A)
[
φem(A)b − V̂kφem(Ĥk)e1

]
.

The sum in (19) represents the leading m̃ terms of an interpolation series (see [23,
Chapter III]) for the function f − Iwf , where w ∈ Pkm denotes the nodal polynomial
of the eigenvalues of Ĥk. Provided the series converges as m̃ → ∞ — for f = exp it is
sufficient to assume the nodes are bounded — we obtain the expansion

f(A)b − V̂kf(Ĥk)e1 = ηk

∞∑
j=1

[
e>kmφj(Ĥk)e1

]
wj−1(A)vkm+1

of the error of the restarted Arnoldi approximation. We obtain an error indicator by trun-
cating the series after one or two terms, where we are free to choose the additional nodes
{ϑj}em

j=1. In the numerical experiments presented below, we choose ϑ1 = minΛ(Ĥk) for
m̃ = 1 and ϑ2 = maxΛ(Ĥk) with the same choice for ϑ1 when m̃ = 2. Computationally,
all that is required for evaluating these error estimates are the coefficients e>kmφj(Ĥk)e1

and the vectors wj−1(A)vkm+1. The former can be extracted from the first column of
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F̃k, em (cf. (17)) after applying f to H̃k, a matrix of size km + m̃ only slightly larger than
Ĥk, whose evaluation is called for in Algorithm 1 and Algorithm 2. The latter require
m̃−1 additional matrix-vector products of A with vkm+1. We emphasize that for m̃ = 1
this means no additional matrix-vector products are necessary and that for m̃ = 2 the
additional matrix-vector product Avkm+1 can be reused in the generation of the Krylov
space of the (k + 1)-st restart cycle.

Note that the choices for ϑ1 and ϑ2 given above for m̃ = 1, 2 correspond to a Gauss-
Radau and a Gauss-Lobatto quadrature formula for the error (cf. [8]). For certain
functions, among these the exponential, it can be shown that these choices result in lower
and upper bounds, respectively, for the error. A rigorous derivation of quadrature-based
a-posteriori error bounds will be the subject of future work.

5 Convergence Issues: A Case Study

With Algorithms 1 and 2, we have described two techniques for implementing a restarted
Krylov subspace method for the evaluation of f(A)b. These differ mainly in the way
the function f is applied to the compressions Ĥk of A. Considering specifically the
exponential function f = exp, in Algorithm 1 a standard routine such as the built-in
Matlab function expm is applied. For the current implementation‡ of expm, this means
that we approximate exp(Ĥk) by a rational expression of the form r1(Ĥk) := r(Ĥk/2s)2

s
,

where r is a [t/t] Padé fraction with t ≤ 13 for the exponential function and s ∈ N0

depends on ‖Ĥk‖1 (see [10]). Note that s and r, and thus r1, depend on the argument.
Therefore, r1 is by no means a rational function—but rather it represents a family of
rational functions from which one member is chosen depending on the current argument:
If this is a scalar λ then r1(λ) is an accurate approximation to exp(λ) regardless of where
in the complex plane λ is located. In floating point arithmetic, r1 is for all practical
purposes indistinguishable from exp; in particular, r1 has no finite poles.

By contrast, Algorithm 2 approximates exp(Ĥk) by r2(Ĥk), where r2 is a fixed rational
function, namely the best uniform rational approximation of type 16 to the exponential
function on (−∞, 0]. In sharp contrast to r1 above, r2 approximates exp well only in a
neighborhood of the negative real axis and therefore lacks the universal approximation
property of r1. Moreover, r2 has finite poles. When approximating exp(A) for matrices
with real nonpositive eigenvalues, as arise e.g. in connection with parabolic initial value
problems, this may appear as a somewhat academic issue; but, as we shall see, this
leads to a tremendous difference in numerical behavior between the two approaches if
the restart length m is sufficiently small. The main distinction is that a restarted Krylov
approximation to f(A)b converges superlinearly if f is an entire function (such as exp,
see [6, Theorem 4.2]), whereas, asymptotically, only a linear rate of convergence results
if f has finite singularities (such as r2).

We demonstrate this using the following model problem. Let

A = diag(−100,−99, . . . , 0) ∈ R101×101 and b = [1, 1, . . . , 1]>/
√

101 ∈ R101.

‡Release 2007a
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Figure 1: Absolute errors of the approximations of f(A)b computed with Algorithms 1
and 2 for restart lengths m = 1, 3 and 10.

(We choose such a simple example in order that the quantities entering our analysis be
explicitly known.) Applying Algorithms 1 and 2 yields approximations to exp(A)b which
we shall denote by f̂

(1)
k and f̂

(2)
k , respectively. We consider restart cycles consisting of

m = 1, m = 3 and m = 10 steps. Figure 1 shows the corresponding absolute errors
‖f̂ (µ)

k − exp(A)b‖ (µ = 1, 2).
For restart length m = 1, we observe that Algorithm 1 converges while Algorithm 2

does not. To explain why we recall that both algorithms are based on interpolation
processes. The interpolation nodes are the eigenvalues of the Hessenberg matrices Ĥk

which, for restart length m = 1, are bidiagonal. It can be shown§ that, in our example,
the diagonal entries (and thus the eigenvalues) of Ĥk are all equal to ϑ = −50. Thus
for restart length m = 1, both algorithms are based on (truncated) Taylor expansions of

§Let pk(λ) = λk ∈ Pk denote the k-th monomial and define the vectors wk =
[pk(−50), pk(−49), . . . , pk(50)]>. Then

P50
j=−50 jpk(j)2 = 2

P50
j=0(j − j)pk(j)2 = 0 and there-

fore, ρk := (w>
k Awk)/(w>

k wk) = (
P50

j=−50(j − 50)pk(j)2)/(
P50

j=−50 pk(j)2) = −50. Consider
the vector Awk − ρkwk whose j-th component (indexed by j ∈ {−50,−49, . . . , 50}) is (j −
50)pk(j) + 50pk(j) = jpk(j) = pk+1(j), i.e., Awk − ρkwk = wk+1. Since for the first Arnoldi
vector v1, there holds v1 = b = w0/‖w0‖ and since the Arnoldi vectors satisfy the recursion
vk+1 = (Avk − (v>k Avk)vk)/‖Avk − (v>k Avk)vk‖, we see that vk = wk/‖wk‖ for all k. Thus,

v>k Avk = (w>
k Awk)/(w>

k wk) = −50, but these are the diagonal entries of bHk.
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Figure 2: Left: Errors maxλ∈Λ(A) |q
(µ)
k−1(λ)− exp(λ)| for the truncated Taylor series q

(µ)
k−1

of exp (µ = 1) and r2 (µ = 2).
Right: Eigenvalues of Ĥ100 + E for ten random matrices of norm ‖E‖ = 2−52.

f = exp and f = r2, respectively, about ϑ = −50: We have

f̂
(1)
k = V̂k exp(Ĥk)e1 = q

(1)
k−1(A)b =

k−1∑
j=0

exp(−50)
j! (A + 50I)jb and

f̂
(2)
k = V̂kr2(Ĥk)e1 = q

(2)
k−1(A)b =

k−1∑
j=0

r
(j)
2 (−50)

j! (A + 50I)jb.

The Taylor polynomials {q(1)
k−1}k≥1 converge (albeit slowly) to exp uniformly on compact

subsets of C. Figure 2 shows the errors ‖q(1)
k−1 − exp ‖∞,Λ(A) := maxλ∈Λ(A) |q

(1)
k−1(λ) −

exp(λ)| of these Taylor polynomials, and these are seen to agree perfectly with the errors
of Algorithm 1. The Taylor polynomials {q(2)

k−1}k≥1, on the other hand, converge to r2 in
a disk with center ϑ = −50 and radius minω |ω + 50|, where ω runs over all poles of r2,
and they diverge outside this disk. The poles of r2 closest to ϑ = −50 are ω ≈ −11±19i
with |ω − ϑ| ≈ 44 < 50. In other words, the Taylor series of r2 (with expansion point
ϑ = −50) has τ ≈ 44 as its radius of convergence. Since some of the eigenvalues of
A lie outside the convergence disk, the sequence {f̂ (2)

k }k≥1 must ultimately diverge like
[maxλ∈Λ(A) |λ + 50|/44]k = (50/44)k ≈ 1.14k (cf. the dotted line in Figure 2). Moreover,

Figure 2 shows that also ‖q(2)
k−1 − exp ‖∞,Λ(A) is in perfect agreement with the errors of

Algorithm 2. (Note that this error curve cannot be distinguished from ‖q(2)
k−1−r2‖∞,Λ(A)

because ‖r2 − exp ‖∞,Λ(A) < 10−15.)
The matrices Ĥk are highly nonnormal (ϑ = −50 is their only eigenvalue, with alge-

braic multiplicity k but geometric multiplicity 1). This raises the question of whether
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it is justified to base our analysis on this eigenvalue of Ĥk, which is extremely sensi-
tive to perturbations, or whether an approach using pseudo-eigenvalues would not be
more appropriate. Our answer is that it does not matter. This is a consequence of a
theorem due to J. L. Walsh [23, Theorem 7.1] on the overconvergence of differences of
interpolating polynomials (which by the way, is another area where Richard Varga has
made significant contributions). As mentioned above, the diagonal entries of Ĥk are all
equal to −50. We observe that its subdiagonal entries ηj,j−1 converge to 50 (see [1] for
a proof), i.e., asymptotically Ĥk resembles a Toeplitz matrix with symbol 50(λ − 1),
and thus its pseudo-spectra (asymptotically) are disks with center −50 (cf. [18]). In
Figure 2, the eigenvalues of Ĥ100 + E are shown for ten random perturbations of norm
‖E‖ = ε = 2−52. The large majority of these pseudo-eigenvalues lies on a circle with cen-
ter −50 and some radius δ > 0 (here δ ≈ 32). If we now consider f̂

(3)
k = q

(3)
k−1(A)b, where

qk−1 interpolates r2 at the nodes −50+ δ exp(2πij/k) (j = 0, 1, . . . , k− 1), then Walsh’s
overconvergence result tells us that, as long as δ < 44, the difference of the interpolating
polynomials |q(2)

k−1(λ)− q
(3)
k−1(λ)| tends to zero for |λ + 50| ≤ 442/δ. This convergence is

linear, more precisely lim supk→∞ max|λ+50|≤τ |q
(2)
k−1(λ)−q

(3)
k−1(λ)|1/k = (δτ)/442. We set

δ = 32 and observe that lim supk→∞ ‖q
(2)
k−1 − q

(3)
k−1‖

1/k
∞,Λ(A) ≤ (50 · 32)/(442) ≈ 0.83. In

other words, ‖f (2)
k − f

(3)
k ‖ tends to zero like 0.83k which is negligible compared to the

size of ‖f (2)
k − exp(A)b‖.

The behavior of Algorithms 1 and 2 for the restart lengths m = 3 and m = 10 (cf.
Figure 1) can be explained along the same lines: Algorithm 1 relies on an interpolation
process for the exponential function whereas in Algorithm 2 its uniform best rational
approximation r2 is interpolated. The nodes are again the eigenvalues of the block
bidiagonal matrices Ĥk, i.e., the eigenvalues of its diagonal blocks H1,H2, . . . ,Hk which
are symmetric tridiagonal matrices of dimension m = 3 and m = 10, respectively. Now
the following observation is crucial: There holds

lim
j→∞

H2j−1 = H̃1 and lim
j→∞

H2j = H̃2

(see [1] for a theoretical justification). The nodal sequence ϑ1, ϑ2, ϑ3, . . . therefore has
the property

lim
j→∞

ϑ2mj+ν = ϑ̃ν for ν = 1, 2, . . . , 2m.

Asymptotically, we interpolate exp and r2 at 2m nodes which are repeated cyclically. In
our example, these nodes are given by

ϑ̃1 ≈ −87, ϑ̃2 = −50, ϑ̃3 ≈ −13, ϑ̃4 ≈ −92, ϑ̃5 = −50, ϑ̃6 ≈ −8

if m = 3. The convergence properties of the corresponding interpolation polynomials
can be described in terms of the lemniscates

Lτ := {λ ∈ C : |w2m(λ)| = τ2m}, τ > 0, w2m(λ) =
∏2m

ν=1(λ− ϑ̃ν).
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Figure 3: Lemniscates Lτ for τ = τs and τ = τA governing the convergence rate of
Algorithm 2 for restart lengths m = 3 (left) and m = 10 (right). The squares
mark the nodes ϑj , the dots the poles of the rational approximation r2.

From a theorem of Walsh [23, Theorem 3.6] it follows that

lim sup
k→∞

‖f̂ (2)
k − exp(A)b‖1/km =

τs

τA
,

where
τs = max{τ : r2 is analytic in the interior of Lτ},

i.e., Lτs is the largest lemniscate with foci ϑ̃ν (ν = 1, 2, . . . , 2m) such that r2 is analytic
in the interior of Lτs , and where

τA = min{τ : Λ(A) is contained in the closed interior of Lτ},

i.e., LτA is the smallest lemniscate with foci ϑ̃ν such that all eigenvalues of A are contained
in the closed interior of LτA . Figure 3 shows these lemniscates for our example.

To summarize, if we replace the exponential function by its rational best approxima-
tion then the convergence of the restarted Lanczos method shows two phases. Initially,
we observe the error behavior of a polynomial approximation to an entire function, i.e.,
after a start-up phase, where the error is not reduced, the polynomial converges super-
linearly. But there is a point from where on the poles become visible and then we have
slower linear convergence or even linear divergence. This point is fairly independent
of the restart length, whereas the linear rate of convergence/divergence depends on it
(of course, it also depends on the eigenvalues of A). The aim is to choose the restart
length large enough such that at the point of transition the desired accuracy is reached
or nearly reached.

6 Numerical Examples

In this section we illustrate the performance of the two restart algorithms for some
initial-boundary value problems. All computations were carried out in Matlab Release
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2007a on an Intel Xeon 5160 at 3 GHz with 16 GB RAM running SuSE Linux Enterprise
Server (SLES) Version 10.

6.1 The Heat Equation

Our first numerical experiment is based on a standard example in this area (see, e.g., [7]
and [6]): We consider the initial-boundary value problem

∂tu−∆u = 0 in Ω = (0, 1)3, t > 0, (20a)
u(x, t) = 0 on Γ = ∂Ω, t > 0, (20b)
u(x, 0) = u0(x) in Ω. (20c)

When the Laplacian is discretized by the usual seven-point stencil on a uniform grid
involving n1 interior grid points in each Cartesian direction, problem (20) reduces to the
initial value problem

u ′(t) = Au(t), t > 0,

u(0) = u0,

with an n× n matrix A (n = n3
1) and an initial vector u0 consisting of the values u0(x)

at the grid points x, the solution of which is given by

u(t) = exp(tA)u0. (21)

As in [7], we give the initial vector in terms of its expansion in eigenfunctions of the
discrete Laplacian as

u i,j,k
0 =

∑
i′,j′,k′

1
i′ + j′ + k′

sin(ii′πh) sin(jj′πh) sin(kk′πh).

Here h = 1/(n1+1) is the mesh size and the triple indexing is relative to the lexicographic
ordering of the mesh points in the unit cube.

We consider this problem for a discretization with n1 = 50, resulting in a matrix of
dimension n = 125, 000. We apply the restarted Lanczos approximation with restart
lengths m = 10, 20, 30, and 50 as well as the full Lanczos algorithm (m = ∞ (I)) and
the two-pass Lanczos method (m = ∞ (II)). Each iteration is run until the accuracy no
longer improves. Note that, in the full methods (m = ∞), the evaluation of exp(Hk) is
only performed once, when final accuracy is reached. The resulting execution times are
shown in Table 1.

For m = 10, Algorithm 2 converges so slowly that the final accuracy was not reached
even after 2000 matrix-vector multiplications. The fastest method is clearly the full
Lanczos algorithm (m = ∞ (I)), but note that it requires storing 282 vectors of dimension
n = 125, 000 (282 MB). To our surprise, the restarted method (for m = 30 and m = 50)
is faster than the double-pass Lanczos algorithm. One also observes that Algorithm 2 is
generally faster than Algorithm 1, but that the final accuracy of Algorithm 1 is higher.
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Algorithm 1 Algorithm 2

m time [s] mvp acc. time [s] mvp acc.

∞ (I) 5.6 282 5e-14 3.9 282 5e-12

∞ (II) 9.7 564 5e-14 7.6 564 5e-12

50 4.8 350 3e-14 4.1 300 6e-12

30 7.9 360 2e-14 6.0 330 5e-12

20 9.5 380 5e-15 7.2 400 6e-12

10 17.4 430 9e-15 — — —

Table 1: Execution times, number of matrix-vector products and final accuracy for the
solution of the heat equation (n = 50) for different restart lengths m. Here,
m = ∞ (I) refers to the standard (unrestarted) Lanczos method, while m =
∞ (II) stands for the (unrestarted) two-pass Lanczos algorithm.

This loss of accuracy for Algorithm 2 stems from the eight linear systems we have to
solve in each cycle. For m = 50 the condition numbers of their coefficient matrices vary
between 2 · 102 and 4 · 102.

We conclude this example by applying the error indicators described in Section 4 for
the restart lengths m = 20 and m = 50 (see Figure 4). We obtain lower (m̃ = 1) and
upper (m̃ = 2) bounds for our two restart algorithms. By their construction it is clear
that the error indicators cannot detect when the method begins to stagnate because final
accuracy has been reached (but this can easily be detected by other means). Specifically,
for Algorithm 2 the point where the the convergence behavior changes from superlinear
to linear is located precisely (even in cases where this occurs long after final accuracy is
reached).

6.2 Maxwell’s Equations

We next consider a problem which occurs in geoelectrical exploration and for which
Lanczos-based Krylov subspace approximations have been very successful, see [5] and
the references given there. In the absence of impressed source currents the time-evolution
of an electric field E = E(x, t) from a given initial state E0 = E0(x) at time t0 is the
solution of the initial value problem

∂t(σE) +∇×
(
µ−1∇×E

)
= 0 in Ω, t > t0, (22a)

n ×E = 0 on ∂Ω, (22b)
E(x, t0) = E0(x) in Ω (22c)
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Figure 4: The error indicators described in Section 4 for the restart lengths m = 20 (left)
and m = 50 (right) and for Algorithm 1 (dashed line) and 2 (dotted line).

for the quasi-static Maxwell’s equations. Here the domain is a cube Ω = (−L,L)3, where
L = 2000 and the magnetic permeability µ and electric conductivity σ are taken to have
the constant values µ = 4π · 10−7 and σ = 0.1. The initial data E0 is the field at time
t0 = 10−6 of a vertical magnetic dipole of unit strength located at the origin for which
an analytic expression is known (see [24]).

We discretize the operator σ−1∇×
(
µ−1∇× ·

)
in space using the Yee finite difference

scheme [25] on a graded tensor product mesh (see Figure 5). After symmetrization (cf.
[5]) this yields a symmetric matrix A ∈ Rn×n and a vector e0 ∈ Rn which is a sampled
version of the initial electric field. The semi-discretized system (22) thus reduces to a
linear linear system of ordinary differential equations with constant coefficients

e ′(t) = −Ae(t), e(t0) = e0,

with solution
e(t) = exp(−(t− t0)A)e0.

The eigenvalues of A are contained in [0, λmax], λmax ≤ 13/(h2
minσµ), where hmin is the

minimal distance of two adjacent grid-points.
In our example the matrix A is of size n = 565, 326 and λmax ≈ 108. We approximate

E(t1), t1 = 10−3, using the Lanczos algorithm (I), the two-pass Lanczos algorithm (II),
as well as Algorithm 1 and Algorithm 2 given above. As a reference solution e(t1)
we used the approximation obtained by the Lanczos method when it stagnates at final
accuracy.

In Algorithm 2 we solve 8 tridiagonal linear systems in each cycle instead of calling
Matlab’s expm which is much more expensive. As a consequence the execution time
of Algorithm 2 is dominated by the number of matrix-vector products. This explains
why the restarted Krylov methods perform slightly faster than the full two-pass Lanczos
method if Algorithm 2 is applied. We terminated our timing measurements for all
algorithms when the absolute error to e(t1) fell below 10−12.
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Figure 5: Computational domain and tensor product grid lines shown on the boundary
for problem (22). The axis indicates the orientation of the magnetic dipole
and the circular lines indicate the direction of the electric field.

Algorithm 1 Algorithm 2

m time [s] mvp acc. time [s] mvp acc.

∞ (I) 118 1072 9.93e-13 86 1072 9.93e-13

∞ (II) 176 2144 9.93e-13 144 2144 9.93e-13

90 273 1350 1.92e-13 118 1350 2.01e-13

70 339 1400 3.28e-13 112 1400 9.13e-13

50 613 1600 2.10e-13 very slow convergence

30 2014 2040 5.64e-13 Krylov approximations diverge

Table 2: Performance comparison of several variants of Lanczos and restarted Lanczos
methods.
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Figure 6: Absolute errors of the approximations of f(A)b for different restart lengths m.
Here, m = ∞ (I) refers to the standard (unrestarted) Lanczos method, while
m = ∞ (II) stands for the (unrestarted) two-pass Lanczos algorithm.
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Figure 7: Geometry and streamlines for the advection-diffusion problem (23).

6.3 The Advection-Diffusion Equation

We consider the initial value problem

∂tu−
1
Pe

∆u + a · ∇u = 0 in Ω = (−1, 1)× (0, 1), (23a)

u = 1− tanh(Pe) on Γ0, (23b)

u = 1 + tanh((2x + 1) Pe) on Γin, (23c)
∂u

∂n
= 0 on Γout, (23d)

u(x, 0) = u0(x) in Ω (23e)

for the advection-diffusion equation, which is a popular benchmark problem for dis-
cretizations of advection-dominated problems, see [20]. The convective field is given
as

a(x, y) =

 2y(1− x2)

−2x(1− y2)

 , 0(x, y) ∈ Ω,

and the boundary Γ = ∂Ω is divided into the inflow boundary Γin := [−1, 0] × {0},
the outflow boundary Γout := [0, 1] × {0} and the remaining portion Γ0 (cf. Figure 7,
left). The Péclet number Pe is a nondimensional parameter describing the strength of
advection relative to diffusion and therefore also how far the discrete operators are from
symmetric.

We discretize the advection-diffusion operator for Pe = 10 in space using linear finite
elements on a triangulation generated by the adaptive mesh generation facility in the
Comsol Multiphysics finite element software (version 3.3a). In the resulting mesh,
shown on the right of Figure 7, one can observe refinements near the sharp transition
in the inflow profile and near the origin, around which the advection field rotates. After
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Figure 8: Relative errors of the full and restarted Arnoldi approximation for the
advection-diffusion problem.

multiplying from the left by the square root of the (lumped) mass matrix¶, the semi-
discretized problem is a system of ODEs

u ′(t) = Au(t) + g , u(0) = u0,

where A is of size n = 2157 and the constant inhomogeneous term g results from
the inhomogeneous Dirichlet boundary condition. We then approximate the matrix
exponential part of the solution

u(t) = exp(tA)(u0 + A−1g)−A−1g

at time t = 6, at which the flow hat reached a steady state, starting from rest u0 =
0, using the unrestarted Arnoldi approximation as well as the restarted schemes of
Algorithms 1 and 2.

The error curves for restart lengths m = 30, 60 and 90 are shown in Figure 8. We
observe that, despite the rather small system size, even the unrestarted Arnoldi method
requires roughly 500 steps to reach a final accuracy of around 10−12. This slow conver-
gence as well as the nonmonotonic, somewhat more erratic convergence curve indicate
¶This makes the Euclidean norm of the transformed vectors coincide with the L2-norm on the finite

element space.
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that this is a harder problem than the preceding two. We also observe that the methods
of restart lengths m = 60 and m = 90 converge at nearly the same rate, and it is no-
ticeable that Algorithm 2 reaches a final accuracy of only around 10−6 in all cases. The
main reason for this loss of accuracy lies in the fact that the spectrum of A extends into
the complex plane, and on the spectrum we have ‖r2− exp ‖∞,Λ(A) ≈ 10−14 for the best
uniform rational approximation r2 on (−∞, 0]. Moreover, additional loss of accuracy
is to be expected from the solution of the 8 linear systems of equations solved in each
restart cycle of Algorithm 2, the condition numbers of which was found to lie near 103

for all three restart lengths. Nonetheless, the restarted schemes converge also with the
relatively small restart length of m = 30.

Algorithm 1 Algorithm 2

m time [s] mvp acc. time [s] mvp acc.

∞ 8.6 410 9e-13 6.7 420 9e-13

90 90.1 1170 8e-14 12.0 1170 3e-13

60 121.0 1140 6e-13 11.8 1140 8e-13

30 685.7 1560 4e-13 15.3 1560 6e-13

Table 3: Execution times, number of matrix-vector products and final accuracy for the
solution of the advection-diffusion problem for different restart lengths m.

Table 3 gives execution times for this example. We observe that the efficiency of
Algorithm 2 over Algorithm 1 is most pronounced here. The fact that both restarted
variants took longer than the full versions is attributed to the small size of the problem.
For large problems, where the orthogonalization effort of full Arnoldi becomes more
noticeable, we expect the timings to increasingly favor the restarted versions. Note that
the advantage of requiring less storage is present also for these small problems.

7 Conclusions

Restarting Krylov subspace approximations of f(A)b is of interest because short recur-
rences for Krylov basis vectors do not translate to short recurrences for the quantity
being approximated. We have introduced an efficient implementation for a restarted
Krylov subspace approximation and compared it against the approach introduced in
[6], both in terms of execution time and convergence properties. The new approach,
Algorithm 2, is faster, as it solves a fixed number of linear systems of equations the size
of the restart length m instead of, as is the case with Algorithm 1, evaluating a func-
tion of a matrix of increasing size km in the k-th cycle. Algorithm 2, while sometimes
considerably faster, has the disadvantage that the restart length may need to be chosen
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somewhat larger to insure convergence. Moreover, the solution of the linear equations
in each cycle of Algorithm 2 can introduce some ill-conditioning which limits the final
attainable accuracy. For the examples considered here involving the exponential prop-
agation of semi-discretized partial differential operators subject to discretization errors,
the requirements on final accuracy are usually sufficiently low that this is not a severe
limitation. We have further introduced an error indicator which allows the termination
of the iteration once sufficient or final accuracy has been reached. Moreover, we have
pointed out the fundamental limitations of using a fixed rational approximation of f to
evaluate f(Ĥk) when the poles of the former approach the spectrum of A.

For the case of the exponential function, the new method was seen to be competitive
with established methods for two symmetric problems, and a viable solution approach
for a difficult non-Hermitian problem. In summary, Algorithm 2 is an attractive scheme,
particularly when memory is limited so that the unrestarted Arnoldi method is not an
option.
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