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Abstract. Ruhe’s rational Krylov method is a popular tool for approximating eigenvalues of
a given matrix, though its convergence behavior is far from being fully understood. Under fairly
general assumptions we characterize in an asymptotic sense which eigenvalues of a Hermitian matrix
are approximated by rational Ritz values and how fast this approximation takes place. Our main tool
is a constrained extremal problem from logarithmic potential theory, where an additional external
field is required for taking into account the poles of the underlying rational Krylov space. Several
examples illustrate our analytic results.
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1. Introduction. In order to approximate parts of the spectrum Λ(A) of a
Hermitian matrix A ∈ CN×N , a widely used approach is to project A onto an n-
dimensional subspace of CN , with n being small compared to N . Given a matrix
Vn ∈ CN×n with orthonormal columns, the eigenvalues of the projected counterpart
V ∗

n AVn ∈ Cn×n are called Ritz values of order n. These Ritz values are often good
approximations to some of A’s eigenvalues, depending on the space spanned by the
columns of Vn.

A well-studied case consists of projecting A onto a (polynomial) Krylov space

Kn(A,b) = span{b, Ab, . . . , An−1b}

for a given starting vector b ∈ CN . Here the so-called polynomial Ritz values typi-
cally approximate extremal eigenvalues of A, although counter-examples can be con-
structed, see, e.g., [23, Section 7].

In a more general Krylov method suggested by Ruhe [34] and further analyzed
by him [35, 36] and other authors [12, 13, 19, 27, 29] the matrix A is projected onto a
rational Krylov space

Krat
n (A,b) = qn−1(A)−1Kn(A,b), qn−1(z) =

n−1∏
j=1

ξj 6=∞

(z − ξj). (1.1)

The numbers ξj ∈ (R ∪ {∞}) \ Λ(A) are referred to as the poles of the rational
Krylov space. These poles are free parameters which can be chosen to amplify inter-
esting parts of Λ(A). In general, we expect that the rational Ritz values approximate
eigenvalues in proximity of the poles.
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In what follows we assume that all eigenvalues λ1 < · · · < λN of A be distinct.
By Θ we denote the set of nth rational Ritz values θ1 < · · · < θn, and by Ξ we denote
the multiset of poles ξ1, . . . , ξn−1. The goal of the present paper is to obtain new
asymptotic upper bounds for the distance dist(λk,Θ) of a given eigenvalue λk of A
to the set of rational Ritz values, which allows us to quantify in an asymptotic sense
which eigenvalues are well approached by rational Ritz values. Our results generalize
recent findings of Kuijlaars [23] for the particular case of polynomial Ritz values, in
particular we describe how the distribution of the rational Ritz values depends both
on the spectrum and the poles.

Our statements are based on asymptotic analysis, which is not possible if only
a single matrix A is considered. Therefore, all our results in §3 are formulated in
terms of sequences of matrices AN ∈ CN×N having a joint eigenvalue distribution
described by the measure σ, and similarly we will presume a joint pole distribution ν.
Note that sequences of matrices having a joint eigenvalue distribution occur quite
frequently in applications. The most prominent examples are finite sections of a
Toeplitz operator, see for instance [8]. Matrices obtained by finite difference or finite
element discretization of PDEs with varying mesh width also have a joint eigenvalue
distribution, see, e.g., [4] and the references therein. Even if our results are of an
asymptotic nature, there is numerical evidence that the phenomena described here
also occur for finite N , at least if N is sufficiently large, see §4.

1.1. Asymptotic distribution of eigenvalues and Ritz values. In order
to describe our main findings on rational Ritz values, let us first recall some recent
asymptotic results on polynomial Ritz values. There is a rule of thumb proposed by
Trefethen and Bau [39] that dist(λk,Θ) is small for eigenvalues λk lying in regions of
the real line where there are “relatively few” eigenvalues. It was Kuijlaars [23] who
first quantified this heuristic rule, and we also refer to the refinements given in an
unpublished note [1] and some related work on isometric Ritz values [21]. Suppose
that the asymptotic eigenvalue distribution is described by a finite positive Borel mea-
sure σ. Under mild assumptions stated explicitly in §3 below, Kuijlaars showed that
the distribution of the polynomial Ritz values of order n is described by a measure µ
which solves an extremal problem from logarithmic potential theory. More precisely,
µ is the measure of total mass t = n/N having minimal logarithmic energy

I(µ) = I(µ, µ), I(µ1, µ2) =
∫∫

log
1

|x− y|
dµ1(x) dµ2(y)

among all measures µ1 ≥ 0 of total mass t satisfying the constraint µ1 ≤ σ. Here the
condition µ ≤ σ comes from the fact that, in any interval, the number of Ritz values
does not exceed the number of eigenvalues by more than one. This last property
is an immediate consequence of the so-called interlacing property (cf. [31, Theorem
10.1.1]):

In each open interval (θj , θj+1) there is at least one eigenvalue of A. (1.2)

We conclude that in parts of the real line where the constraint µ ≤ σ is active, there
are asymptotically as many Ritz values as eigenvalues. Kuijlaars also showed that
eigenvalues lying in a neighborhood of a point z with the logarithmic potential

Uµ(z) =
∫

log
1

|x− z|
dµ(x)
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being strictly less than the maximum F of Uµ in the complex plane are approximated
by Ritz values with a geometric rate. Typically, the set of such points z is given by
R \ supp(σ−µ), which is outside the set where the constraint µ ≤ σ is not active, see
Remark A.2.

The goal of the present paper is to generalize the above two results to rational
Ritz values. Notice that

qn−1(A)−1Kn(A,b) = Kn(A, qn−1(A)−1b),

i.e., every rational Krylov space is also a polynomial Krylov space for the modified
starting vector qn−1(A)−1b. This is the reason why rational Ritz values inherit many
properties from polynomial Ritz values, in particular the interlacing property (1.2).
We will assume that the asymptotic distribution of poles is given by some measure ν
of total mass ‖ν‖ = t, and set

Mσ
t = {µ1 Borel measure : µ1 ≥ 0, µ1 ≤ σ, ‖µ1‖ = t},

where again t = n/N . Then, under additional mild assumptions which are similar
to those of Kuijlaars and stated explicitly in §3, we first show that the asymptotic
distribution of the nth rational Ritz values is given by the unique measure µ ∈ Mσ

t

which is “closest” to ν. Here the distance is measured in terms of the energy of a
signed measure

I(µ− ν) = I(µ)− 2I(µ, ν) + I(ν) ≥ 0.

It is known from potential theory [38, Example II.4.8] that, for sufficiently large σ,
µ would be just the balayage of ν onto supp(σ). In our case the situation is more
complicated because of the constraint µ ≤ σ. However, we may again conclude that in
real intervals I where the constraint µ ≤ σ is active there are asymptotically as many
Ritz values as eigenvalues, and this is in particular true by Lemma A.1(e) provided
that ν − σ is positive on I, i.e., roughly speaking, the number of poles exceeds the
number of eigenvalues in I.

Secondly, we will generalize Kuijlaars’s findings on the rate of convergence to
rational Ritz values: we show that eigenvalues close to a point z with Uµ−ν(z) being
strictly less than the maximum F of Uµ−ν on C are approached by rational Ritz
values with an explicit geometric rate, and this typically happens if the constraint
µ ≤ σ is active in a neighborhood of z, i.e., z 6∈ supp(σ − µ). We refer the reader
to §3 for the precise statements of our results and a discussion of our assumptions.

Polynomial Ritz values approaching eigenvalues may be rewritten as zeros of
discrete orthogonal polynomials approaching the discrete support of the measure of
orthogonality. Thus the findings of [1, 21, 23] are related to results from the late
last century about weak asymptotics of discrete polynomials due to Rakhmanov [32]
and Dragnev & Saff [14], Van Assche & Kuijlaars [26], Beckermann [2], and others
[10, 11, 25]. In the present paper we use the well-known fact [13] that rational Ritz
values may be written as zeros of discrete orthogonal rational functions [9]. To our
knowledge, weak asymptotics of such discrete rational orthogonal functions have not
been published elsewhere, but, as we will see, they follow by considering the numerator
as a discrete orthogonal polynomial, and incorporating the denominator in a varying
weight.

1.2. Structure of the paper and notation. In §2 we shortly recall some basics
about polynomial and rational Krylov spaces and make the link with discrete orthog-
onal polynomials and discrete orthogonal rational functions. The precise statements
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of our results are given in §3, mainly in Theorem 3.1, Theorem 3.2, and Corollary 3.3.
In §4 we illustrate our findings by discussing one analytic example and two numerical
experiments. To keep the exposition easy to read we decided to present the main
proofs in §5. We have added an Appendix A with some tools from potential the-
ory, which are needed for the main proofs. Though our findings are proved using
logarithmic potential theory, the reader does not need to be an expert in this field
in order to understand the main statements. We refer the interested reader to the
introductions [15, 28] or to the monographs [33, 38] for further details on potential
theory.

Throughout this paper we assume exact arithmetic and thus effects like rounding
errors and loss of orthogonality are not considered. If not otherwise stated, 〈 · , · 〉
refers to the standard scalar product in CN and ‖ · ‖ is the induced norm.

2. Krylov spaces.

2.1. Polynomial Krylov sequences. In the polynomial Krylov approach a
matrix Vn ∈ CN×n is constructed with columns v1, . . . ,vn forming an orthonormal
basis for the Krylov space Kn(A,b). Starting from v1 = b/‖b‖, the vectors vj+1

are constructed iteratively by the so-called Arnoldi process, by orthonormalizing the
vector Avj against the already known orthonormal vectors v1,v2, . . . ,vj . This leads
to the equations

Avj = h1,jv1 + · · ·+ hj,jvj + hj+1,jvj+1,

which for j = 1, . . . , n may be rewritten in matrix language as an Arnoldi decomposi-
tion

AVn = VnHn + hn+1,nvn+1eT
n ,

where Vn = [v1, . . . ,vn] and Hn = [hi,j ] is an n × n unreduced upper Hessen-
berg matrix. This Arnoldi decomposition provides readily the projected counterpart
V ∗

n AVn = Hn, whose eigenvalues are the polynomial Ritz values of order n. In the
present paper, A is Hermitian and hence the Arnoldi process reduces to the more
economical Lanczos process.

There is a close relation between discrete orthogonal polynomials and the Lanczos
process. By construction, there exist polynomials pj of exact degree j such that

vj+1 = pj(A)b/‖b‖. (2.1)

Defining the normalized eigencomponents by

w(λk) = |〈zk,b/‖b‖〉| = |〈zk,v1〉| ∈ [0, 1], (2.2)

zk being a normalized eigenvector for λk (k = 1, . . . , N), and the scalar product

〈p, q〉 := 〈p(A)v1, q(A)v1〉 =
N∑

k=1

w(λk)2p(λk)q(λk), (2.3)

we find using (2.1) that 〈pi, pj〉 = 〈vi,vj〉 = δi,j . In other words, pj is the jth
orthogonal polynomial with respect to the discrete scalar product (2.3). Also, one
can easily prove that the zeros of pn coincide with the polynomial Ritz values of
order n.
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2.2. Rational Krylov sequences. In [34], a rational Krylov method was pre-
sented as an extension of the shift-and-invert Arnoldi process allowing for vary-
ing shifts. This method recursively computes an orthonormal basis of the rational
Krylov spaces defined in (1.1). Consider a multiset of poles Ξ = {ξ1, . . . , ξn} ⊂
(R ∪ {∞}) \ Λ(A). Starting from v1 = b/‖b‖, each vector vj+1 is obtained by or-
thonormalizing the vector A(I − A/ξj)−1vj against the already known orthonormal
vectors v1,v2, . . . ,vj . This leads to the equations

A(I −A/ξj)−1vj = h1,jv1 + · · ·+ hj,jvj + hj+1,jvj+1,

which for j = 1, . . . , n may be rewritten in matrix language as a rational Arnoldi
decomposition

AVn(HnDn + In) + hn+1,nξ−1
n Avn+1eT

n = VnHn + hn+1,nvn+1eT
n , (2.4)

where Vn = [v1, . . . ,vn], Hn = [hi,j ] is an n×n unreduced upper Hessenberg matrix,
hn+1,n ∈ C, Dn = diag(1/ξ1, . . . , 1/ξn) and In is the identity matrix of size n × n.
Note that if all poles ξj = ∞ then Dn = O and (2.4) reduces to a standard Arnoldi
decomposition.

It follows from (1.1) that we may write

vj+1 = rj(A)b/‖b‖, rj = pj/qj , deg pj ≤ j, (2.5)

and the orthogonality of the basis vectors leads to 〈rk, r`〉 = δk,` with the scalar
product as in (2.3), that is, rj is the jth orthogonal rational function with respect to
a discrete scalar product. However, as pointed out, e.g., by Deckers and Bultheel [13],
the nth rational Ritz values in general are no longer the zeros of rn since the latter
depend on ξn, but Vn and the projected matrix V ∗

n AVn do not depend on the last
pole ξn. In order to derive a simple formula for V ∗

n AVn, we put ξn = ∞ in (2.4) and
obtain the modified rational Arnoldi decomposition

AVn(H̃nD̃n + In) = VnH̃n + h̃n+1,nṽn+1eT
n , (2.6)

where H̃n, D̃n are obtained from Hn, Dn by adapting the last column (in particular
these new matrices do no longer form a nested sequence) and we have a modified
vector ṽn+1 being orthogonal to v1, . . . ,vn, which as in (2.5) can be written as

ṽn+1 = r̃n(A)b/‖b‖, r̃n = p̃n/qn−1, deg p̃n ≤ n. (2.7)

Note that from (2.6) we obtain the simple formula

V ∗
n AVn = H̃n(H̃nD̃n + In)−1.

Moreover, by writing (2.6) in terms of rational functions

z[r0(z), . . . , rn−1(z)](H̃nD̃n + In) = [r0(z), . . . , rn−1(z)]H̃n + h̃n+1,n[0, . . . , 0, r̃n(z)],

we observe that θ is a zero of r̃n if and only if it is an eigenvalue of V ∗
n AVn. In other

words, the set of nth rational Ritz values is the set of zeros of r̃n.

Remark 2.1. The recursive construction above does not allow for poles at zero.
This is no restriction since one can consider a shifted matrix A − τI and construct
the rational Krylov space with shifted poles ξj − τ (see, e.g., [27]).
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The construction of the orthonormal basis vector vj+1 from rj−1(A)b/‖b‖ may
break down if, by chance, rj−1(ξj) = 0. Such break-downs can be avoided by using
instead of rj−1 a linear combination of r0, . . . , rj−1 which has no zero at ξj (see,
e.g., [34]).

Remark 2.2. It is well-known that for Hermitian matrices A the Lanczos process
generates a tridiagonal matrix Tn = V ∗

n AVn. In case of all poles being different
from infinity it was proven in [19] that the matrix Tn is no longer tridiagonal but
of semiseparable plus diagonal form, in which the diagonal consists of the poles, i.e.,
Tn = Sn+∆−1

n with ∆n = diag(1, 1/ξ1, 1/ξ2, . . . , 1/ξn−1), where Sn is semiseparable1.
In the general case with some of the poles being equal to infinity, it is possible to

show that the the projected counterpart Tn is a block-diagonal matrix (with the blocks
overlapping the top and bottom diagonal elements) being either of semiseparable plus
diagonal or tridiagonal form (see, e.g., [40, Section 1.2.5]).

In order to compute rational Ritz values it is essential to be able to compute the
eigenvalues of the projected counterpart fast enough. This coincides with computing
eigenvalues of a Hermitian quasiseparable matrix. Fast O(n2)–algorithms for comput-
ing these eigenvalues can be found, e.g., in [17,18,41].

2.3. Bounding the distance via a polynomial extremal problem. Clas-
sical results on the convergence of Ritz values can be found in several textbooks
[20, 30, 37, 39]. Many of them are derived by exploiting the relation between polyno-
mials and Krylov spaces, where an important ingredient for estimating the distance of
an eigenvalue to the set of Ritz values is a link to some polynomial extremal problem.
Typically, such procedures are used to handle extremal eigenvalues or outliers, but, as
shown for instance in [1, Lemma 2.2], this approach is also useful for detecting eigen-
values in other parts of the spectrum. Let us prove here an extension of [1, Lemma 2.2]
to the rational case, which will be the basic tool in establishing our main results.

Lemma 2.3. Consider the polynomials p̃n and qn−1 defined in (2.7), and the
eigencomponents w(λj) defined in (2.2).

If λk ≤ θ1 then

θ1 − λk = min


∑N

j=1,j 6=k
w(λj)

2

qn−1(λj)2
(λj − θ1) s(λj)2

w(λk)2

qn−1(λk)2 s(λk)2

∣∣∣ deg(s) < n, s(λk) 6= 0

 .

The minimum is attained for s(x) = p̃n(x)/(x− θ1).
Suppose λk ∈ [θκ−1, θκ], then

(λk − θκ−1) (θκ − λk)

= min


∑N

j=1,j 6=k

w(λj)2

qn−1(λj)2
(λj − θκ−1) (λj − θκ) s(λj)

2

w(λk)2

qn−1(λk)2
s(λk)2

∣∣∣ deg(s) < n− 1, s(λk) 6= 0

 .

The minimum is attained for s(x) = p̃n(x)/ ((x− θκ−1)(x− θκ)).
Proof. We only prove the second case λk ∈ [θκ−1, θκ], a proof for the other

case is similar. First recall from §2.2 that the nth rational Ritz values θj are the
zeros of the numerator p̃n of the rational function r̃n defined in (2.7). We claim

1In case that Sn is nonsingular its inverse is a tridiagonal matrix. A semiseparable matrix is
characterized by the fact that all submatrices taken out of the part below and including the diagonal
are of rank at most one.
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that this numerator is in fact an nth discrete orthogonal polynomial. Consider the
polynomials q̂` := qn−1/q`. It follows from (1.1) that the rational functions r` =
p`/q` = (p`q̂`)/qn−1 span the space Pn−1/qn (` = 0, 1, . . . , n − 1), and hence the
polynomials p`q̂` of degree ≤ n − 1 span the space Pn−1. Using (2.5), (2.7) and the
orthogonality of the vectors vj we have

0 = 〈ṽn+1,v`+1〉
= 〈qn−1(A)−1p̃n(A)v1, q`(A)−1p`(A)v1〉
= 〈qn−1(A)−1p̃n(A)v1, qn−1(A)−1(p`(A)q̂`(A))v1〉

=
N∑

j=1

w(λj)2

qn−1(λj)2
p̃n(λj) (p`(λj)q̂`(λj)) ,

hence p̃n ⊥ Pn−1 for this modified discrete scalar product.
Gaussian quadrature provides us with the existence of some weights ρ1, . . . , ρn

such that

N∑
j=1

w(λj)2

qn−1(λj)2
ŝ(λj) =

n∑
j=1

ρ2
j ŝ(θj), (2.8)

for all polynomials ŝ of degree at most 2n − 1. Taking a polynomial s of degree less
than n− 1 with s(λk) 6= 0 and setting ŝ(x) = (x− θκ−1)(x− θκ)s(x)2, the right-hand
side of (2.8) is positive, and hence

(λk − θκ−1) (θκ − λk) ≤
∑N

j=1,j 6=k
w(λj)

2

qn−1(λj)2
(λj − θκ−1) (λj − θκ) s(λj)2

w(λk)2

qn−1(λk)2 s(λk)2
.

For s(x) = p̃n(x)/((x−θκ−1)(x−θκ)) the right-hand side of (2.8) is zero and equality
is obtained in the above estimate.

In order to give a better understanding of the potential impact of Lemma 2.3, let
us have a closer look at the first part for polynomial Ritz values (i.e., qn = 1). Since
all Ritz values lie in the open interval (λ1, λN ), we may choose k = 1, and get for
dist(λ1,Θ) = θ1 − λ1 the upper bound

dist(λ1,Θ) ≤
N∑

j=2

|λN − λ1|w(λj)2

w(λ1)2
maxj=2,...,N |s(λj)|2

|s(λ1)|

for any polynomial s of degree at most n − 1. More explicit upper bounds can be
obtained by choosing s taking the value 1 at λ1 and being small on the convex hull of all
other eigenvalues, leading to the well-known Kaniel-Page-Saad estimate for extremal
eigenvalues [20, 30, 37, 39]. This construction is similar to the one in the proof of the
classical convergence bound for the CG method, which predicts linear convergence
in terms of the condition number of A: here the spectrum is also replaced by its
convex hull. However, for bounding dist(λ1,Θ) it is only necessary that s is small on
the discrete set {λ2, . . . , λN}. The optimal polynomials for both tasks can look quite
different, see Figure 2.1 for a simple example. Therefore a precise upper bound of
dist(λk,Θ) needs to incorporate the fine structure of the spectrum, see [1,21,23]. This
fine structure also explains the superlinear convergence behavior of the CG method
(see [5–7] and the reviews [24] and [3]).
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Fig. 2.1. The absolute value of two polynomials of degree 17 taking value 1 at 0. One polynomial
(solid red) is minimal on the discrete set {1, 2, . . . , 20}, and the other polynomial (dashed blue) is
minimal on the interval [1, 20].

3. Statement of the main results. Following Kuijlaars and his successors
[1,5–7,21,23], we will consider a sequence of Hermitian matrices AN ∈ CN×N having
a joint eigenvalue distribution described by some measure σ: write more explicitly
the set ΛN = Λ(AN ) of eigenvalues λ1,N < · · · < λN,N of AN , and consider the
normalized counting measure∫

f(x) dχN (ΛN )(x) :=
1
N

∑
x∈ΛN

f(x), f ∈ C(R),

that is, the normalized sum of mass points δx. We then ask that the sequence
(χN (ΛN )) has the weak star limit σ, written shorter χN (ΛN ) → σ, where we re-
call that, for a sequence of measures σn with supports included in some compact real
interval, the relation σn → σ means that

∫
f dσn →

∫
f dσ for all f ∈ C(R). Our

definition of normalized counting measures naturally extends to multisets, but here
we will count each element according to its multiplicity. This will be important for
the pole counting measures only since the eigenvalues and Ritz values are distinct,
anyway.

From now on we adapt our notation to the following conventions:
We add an index N to all our quantities. More precisely, we consider
• Hermitian matrices AN ∈ CN×N with distinct eigenvalues λ1,N < · · · < λN,N ,

spectra ΛN = Λ(AN ),
• starting vectors bN ∈ CN with eigencomponents wN (λj,N ) ∈ [0, 1],
• a multiset ΞN ⊂ R \ ΛN of the n− 1 poles ξ1,N , . . . , ξn−1,N , and
• a set ΘN of nth rational Ritz values θ1,N < · · · < θn,N for (AN ,bN ) and the

poles ΞN .
Here n = n(N) will always be chosen such that n(N)/N → t ∈ (0, ‖σ‖) as N →∞,
where ‖σ‖ = σ(C) is the total mass of the positive measure σ.

In order to formulate the precise statements, we first specify and motivate the
necessary assumptions:
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(H1) The spectra and pole sets are uniformly bounded: there exist compact sets
Λ and Ξ such that for all N there holds ΛN ⊂ Λ and ΞN ⊂ Ξ.

(H2) The matrices AN have an asymptotic eigenvalue distribution described by
some measure σ: we have χN (ΛN ) → σ for N →∞.

(H3) We have a weak separation of eigenvalues: for any sequence ΛN 3 λk(N),N →
λ for N →∞ there holds

lim sup
δ→0+

lim sup
N→∞

1
N

∑
0<|λj,N−λk(N),N |≤δ

log
1

|λj,N − λk(N),N |
= 0.

It follows (see Lemma A.4 below) that z 7→ Uσ(z) is continuous.
(H4) The multisets of poles ΞN counting multiplicities have an asymptotic behavior

described by some measure ν: we have χN (ΞN ) → ν for N →∞.
(H5) The eigencomponents wN (λk,N ) ∈ [0, 1] defined in (2.2) are sufficiently large

lim inf
N→∞

min
k

wN (λk,N )1/N = 1.

(H6) We have a strict separation of poles from eigenvalues: Λ ∩ Ξ is empty. It
follows from Assumptions (H1) and (H4) that Uν is continuous on Λ.

Conditions (H1), (H2) and (H4) are required to define our asymptotic setting.
The other conditions are essential to obtain interesting bounds for dist(λk,Θ) from
Lemma 2.3. For instance, in accordance with (H5), one should impose that the
eigencomponent w(λk) ∈ [0, 1] is not “too small”. Also, the condition (H6) will be
convenient in order to understand the role of the denominators qn in Lemma 2.3.

Conditions (H1), (H2), (H3) and (H5) were also used by Kuijlaars [23] in his
study of polynomial Ritz values. The rather technical condition (H3), first suggested
in [14], prevents eigenvalues from clustering exponentially close for increasing N .
This condition allows for equidistant eigenvalues or Chebyshev eigenvalues (i.e., the
eigenvalues of the discretized 1D-Laplacian), but also more general sets of points [14].
The continuity of Uσ together with the Lemma of Rakhmanov [32] implies that Uρ is
continuous and thus I(ρ) is finite for each ρ ∈Mσ

t .
Generalizing the work [23] of Kuijlaars, we have the following main findings.

Theorem 3.1. Under the Assumptions (H1)–(H6), the n(N)th Ritz values have
an asymptotic distribution described by χN (ΘN ) → µ, with the positive finite Borel
measure µ being the unique minimizer of µ1 7→ I(µ1)− 2I(ν, µ1) within Mσ

t .
Define F as the maximum of Uµ−ν in the whole complex plane, and Σ∗t = {z ∈

C : Uµ−ν(z) = F}. In a closed interval J ⊂ R \ Σ∗t ⊂ R \ supp(σ − µ), all sequences
J 3 λk(N),N → λ for N →∞ satisfy

lim
N→∞

dist(λk(N),N ,ΘN )1/N = exp(2(Uµ−ν(λ)− F )),

with the possible exclusion of at most one unique “exceptional index” k∗(N).

Under the above assumptions on σ, ν, the existence and uniqueness of a minimizer
of µ 7→ I(µ)− 2I(µ, ν) within Mσ

t is shown in Lemma A.1(a). Provided that I(ν) is
finite, we may write I(µ)−2I(µ, ν) = I(µ−ν)−I(ν), and recall from [38, Lemma I.1.8]
that I(µ−ν) ≥ 0, with equality if and only if µ = ν. Hence, Theorem 3.1 tells us that,
under the Assumptions (H1)–(H6), the Ritz values are asymptotically distributed
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like µ, the closest element ofMσ
t to the pole measure ν, where the distance is measured

in terms of the logarithmic energy I(µ − ν). Moreover, eigenvalues close to z with
Uµ−ν(z) strictly less than the maximum F of Uµ−ν on C are approached by rational
Ritz values with a geometric rate, and this typically happens if the constraint µ ≤ σ is
active in a neighborhood of z, i.e., z 6∈ supp(σ−µ), see Lemma A.1 and Remark A.2.
At the end of §5.1 we will discuss an explicit example showing that “exceptional
eigenvalues” with a different rate of convergence do indeed exist.

For a proof of Theorem 3.1 presented in §5.1, we will quote some basic re-
sults from the late last century about asymptotics of discrete polynomials due to
Rakhmanov, Dragnev & Saff, Van Assche & Kuijlaars, Beckermann, and others
[2,10,11,14,25,26,32]. However, Theorem 3.1 is not completely satisfactory for three
reasons: first of all, what is the convergence rate for the exceptional index λk∗(N),N?
Also, for the convergence of dist(λk(N),N ,ΘN )1/N we should just insure that the
eigencomponent wN (λk(N),N )1/N → 1, but the Assumption (H5) also imposes that
all other eigencomponents are large. Finally, and perhaps the most important point,
we expect an even better convergence rate of an n(N)th Ritz value towards λk(N),N

if there are poles very close to λk(N),N , which is yet forbidden2 by (H6).
By weakening our assumptions, we will no longer be able to describe the limit

density of Ritz values, but it is still possible to achieve at least the same rate of
convergence for the Ritz values.

Theorem 3.2. Assume that the Assumptions (H1)–(H4) hold, and let the
minimizing measure µ ∈Mσ

t and F ∈ R be as in Theorem 3.1. Replace (H6) by
(H6’) Consider the Jordan decomposition of the signed measure ν − σ = ν0 − σ0.

Both supp(σ) and supp(ν0) are finite unions of closed intervals, and Uν is
continuous at each x ∈ Λ with Uν(x) < ∞.

Then we have for any sequence ΛN 3 λk(N),N → λ

lim sup
N→∞

dist(λk(N),N ,ΘN )1/N ≤ exp(Uµ−ν(λ)− F ) lim sup
N→∞

wN (λk(N),N )−1/N . (3.1)

If in addition (H5) holds, then

lim sup
N→∞

dist(λk(N),N ,ΘN )1/N ≤ exp(2(Uµ−ν(λ)− F )), (3.2)

with J 3 λk(N),N 6= λk∗(N),N as in Theorem 3.1.

A remaining drawback in Theorem 3.2 is that Assumption (H1) requires the
spectra and poles to be uniformly bounded for all N , in particular, we do not allow
for poles ξj,N = ∞ (excluding the case of polynomial Ritz values). One of the reasons
for Assumption (H1) is to be able to define correctly the limits occurring in (H2)
and (H4), since for instance it is not clear what is the logarithmic potential of a mass
point at ∞. This situation of unbounded spectra/poles is discussed in the following
statement.

2In fact, by having a closer look at the above-mentioned work on discrete orthogonal polynomials,
it is possible to allow for poles out of Λ \ ΛN in Theorem 3.1, but then for the sets ΛN ∪ ΞN we
would require a separation condition similar to (H3). In particular, this means that poles are not
exponentially close to eigenvalues. We found such a separation condition too restrictive, and suggest
in this paper a new and different approach.
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Corollary 3.3. Suppose that there is a τ ∈ R such that all spectra ΛN are
subsets of (τ,+∞), with lim infN dist(τ,ΛN ∪ ΞN ) > 0. Consider the transformed
eigenvalues/poles

λj,N =
1

λj,N − τ
, ξ

j,N
=

1
ξj,N − τ

,

and replace the λj,N in (H1)–(H4) by λj,N , and similarly the ξj,N by ξ
j,N

. Provided
that all distances are measured in the chordal metric on the Riemann sphere instead
of the euclidean metric, all assertions of Theorem 3.1 and Theorem 3.2 remain true if
we drop Assumption (H1). Moreover, for a sequence of eigenvalues λk(N),N → λ =
τ + 1/λ, the claimed rate of convergence Uµ−ν(λ)− F does not depend on the actual
choice of τ .

In summary, these theorems allow to predict the regions of converged Ritz values
for a given eigenvalue distribution σ and pole distribution ν. We illustrate this with
the help of some examples in the following section.

4. Examples.
An analytic example. We consider the symmetric Toeplitz matrix

AN =


q0 q1 q2

q1 q0 q1 . . .

q2 q1 q0 . . .
. . . . . . . . .

 ∈ RN×N

for q ∈ (0, 1). It is known (see [22] and also [6]) that the family of matrices (AN )N≥1

has a joint asymptotic eigenvalue distribution described by the measure σ being sup-
ported on the positive interval [α, β], with density

dσ

dx
(x) =

1
πx
√

(x− α)(β − x)
, α =

1− q

1 + q
, β =

1 + q

1− q
.

One easily verifies with the help of [38, Equation (II.4.47)] that dσ/ dx coincides with
the density of the balayage of the measure δ0/

√
αβ = δ0 onto [α, β]. If we assume

that the poles are only placed to the right of β, i.e., supp(ν) ⊂ (β, +∞), we can apply
Lemma A.3 to compute supp(σ − µ) = [α, b(t)], outside of which we have geometric
convergence of Ritz values (cf. Remark A.2). As a simple example we set ν = tδξ

for some ξ > β. Then the integral equation from Lemma A.3 can be solved for
b = b(t) ∈ [α, β] if t ≥ t0, where

t0 :=
1
β

√
ξ − β

ξ − α
, and thus b(t) =

{
β, if t < t0,

ξ
t2β(ξ−α)+1 , if t ≥ t0.

In Figure 4.1 we illustrate the convergence of Ritz values of order n = 1, . . . , N
for the matrix AN with N = 100 and q = 1/3. In column n one finds the nth rational
Ritz values (and thus the eigenvalues in the right-most column n = N), where in all
figures we have used the color code given in Table 4.1 to display the distance of a Ritz
value to the set of eigenvalues relative to the spread of the spectrum λN − λ1.

For this example the spectral interval is supp(σ) = [1/2, 2]. In the left figure we
have placed all poles in ξ = 10, whereas in the right figure all poles are in ξ = 2, i.e.,
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Table 4.1
Color code for the following figures.

Color Relative distance of a Ritz value θ to the spectrum

Red dist(θ, Λ(AN )) < 10−7.5

Yellow 10−7.5 ≤ dist(θ, Λ(AN )) < 10−5

Green 10−5 ≤ dist(θ, Λ(AN )) < 10−2.5

Blue 10−2.5 ≤ dist(θ, Λ(AN ))

on the right-end of the support interval of σ. In both cases the starting vector was
chosen to have equal components in all eigenvectors. The graph of b(t) (solid black
line) is a good indicator for the regions where the Ritz values begin to converge to
eigenvalues of AN . We observe that the Ritz values are attracted by the pole and this
effect becomes stronger as the pole moves closer to the spectrum of AN .
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Fig. 4.1. In these figures we plot Ritz values of order n = 1, . . . , N . The colors indicate the
distance of a Ritz value to a closest eigenvalue of the Toeplitz matrix AN from the Kac-Murdock-
Szegő example (N = 100, q = 1/3). The solid black line is the graph of b(t), t = n/N . In the left
figure all poles are in ξ = 10 and in the right figure all poles are in ξ = 2.

We remark that the convergence analysis of rational Ritz values for a fixed pole ξ
is closely related to the analysis of polynomial Ritz values for the shifted and inverted
matrix (A − ξI)−1. In the following examples we also consider non-constant pole
sequences. Unfortunately, this complicates the set supp(σ − µ) and it becomes much
more complicated (or even impossible) to obtain analytic expressions of its boundary
points depending on t. In the following examples we have therefore approximated
the extremal measure µ (depending on t) numerically, by minimizing the energy over
measures having a piecewise linear density, which is a subset of Mσ

t . This leads to
a constrained quadratic optimization problem for the energy with a finite number of
unknowns, which we solved with an active set algorithm via Matlab.

Equidistant eigenvalues. Let AN have N equidistant eigenvalues within [−1, 1].
Then σ is the Lebesque measure restricted onto [−1, 1]. Without loss of generality we
can consider AN = diag(1 −N, 3 −N, . . . , N − 1)/(N + 1), because the convergence
behavior of the Ritz values depends on σ only and not on the eigenvector directions.
It is known that the polynomial Lanczos method finds equidistant eigenvalues from
the boundary of the interval [−1, 1] to the inside. More precisely, supp(σ − µ) =
[−a(t), a(t)] with a(t) =

√
1− t2 (cf. [6]). This is different in the presence of poles
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as we illustrate in Figure 4.2 (in this example we set N = 100 and b = [1, . . . , 1]T ).
In the left of Figure 4.2 we have placed all poles at 0, the midpoint of the spectral
interval of AN . It is clearly seen that in contrast to the polynomial Lanczos method,
now the inner eigenvalues are found first by the rational Krylov method. In the right
figure we have used alternating poles ξ2j−1 = 0 and ξ2j = 1 (j = 1, . . . , 50). Now
the Ritz values first converge to eigenvalues at the left boundary and close to the
midpoint of the spectral interval of AN . The black solid line indicates the boundary
of supp(σ − µ) depending on t, which was computed numerically.
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Fig. 4.2. In these figures we plot Ritz values of order n = 1, . . . , N . The colors indicate the
distance of a Ritz value to a closest eigenvalue of AN (N = 100) with equidistant eigenvalues in
[−1, 1]. The solid black line is the boundary of supp(σ − µ) as a function of t = n/N . In the left
figure all poles are at 0 and in the right figure the poles are alternating (0, 1, 0, 1, . . .).
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Fig. 4.3. In these figures we plot the Ritz values of order n = 1, . . . , N . The colors indicate
the distance of a Ritz value to a closest eigenvalue of AN (N = 100) with equilibrium-distributed
eigenvalues in [0, 4]. The solid black line is the boundary of supp(σ − µ) as a function of t = n/N .
In the left figure the poles are (0,∞, 0,∞, . . .) and in the right figure the poles are (0, 4, 0, 4, . . .).

Equilibrium-distributed eigenvalues. Let

AN =

 2 −1
−1 2 −1

. . . . . . . . .

 ∈ RN×N ,
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then σ is the equilibrium measure on [0, 4]. Due to this fact actually no eigenvalue of
AN is found by the polynomial Lanczos method as long as n < N . This is no longer
the case if a rational Krylov method is used. In Figure 4.3 (left) we illustrate the
convergence of the rational Ritz values if the pole sequence (0,∞, 0,∞, . . .) is used
(N = 100). This sequence occurs, e.g., in the so-called extended Lanczos method for
the approximation of matrix functions (see [16]). The Ritz values close to 0 are found
in very early iterations. On the right of Figure 4.3 the convergence behavior for the
pole sequence (0, 4, 0, 4, . . .) is shown3. As before, the black solid line indicates the
boundary of supp(σ − µ) depending on t, which was computed numerically.

5. Proofs. To retain from cluttering the formulas with an overloaded subindex
notation we take the following conventions in the remainder for the polynomials intro-
duced in §2.2 and Lemma 2.3, which according to the notation of §3 have an additional
index N

p̃n(N),N = PN , qn(N)−1,N = QN , (5.1)

and accordingly we write s = SN for the polynomial in Lemma 2.3. We may assume
without loss of generality that both PN and QN are monic. Note also that the index N
does not indicate the degree of these polynomials.

5.1. Proof of Theorem 3.1. Our proof is divided into three parts. In Proposi-
tion 5.1 we first establish an upper bound for the quadratic polynomial of Lemma 2.3.
Secondly, we show in Proposition 5.3 that this gives essentially the results claimed
in Theorem 3.2. In a third step we show that these results are sharp as claimed in
Theorem 3.1.

Our second step is more of a combinatorial nature and inspired by [1] (see also [21]
for the case of isometric Ritz values). For the other two parts we could use well-
established asymptotics for discrete orthogonal polynomials obtained by Rakhmanov
[32] and Dragnev & Saff [14], followed by several other authors, since there is a link
with the extremal polynomial in Lemma 2.3. However, at least for the first step, we
decided to follow [6] to give the explicit proof by designing a “good” polynomial, since
this construction will be generalized in our proof of Theorem 3.2.

Proposition 5.1. Under the Assumptions (H1)–(H4) and (H6), let ΛN 3
λk(N),N → λ for N → ∞, and denote by θκ(N)−1,N < θκ(N),N the nth (rational)
Ritz values out of ΘN closest to λk(N),N on the left and on the right of λk(N),N ,
respectively. Then

lim sup
N→∞

|wN (λk(N),N )2(λk(N),N − θκ(N)−1,N )(θκ(N),N − λk(N),N )|1/N (5.2)

≤ exp(2(Uµ−ν(λ)− F )).

If there is no such Ritz value on the left or on the right of λk(N),N , then the above
bound remains valid after omitting the corresponding linear factor.

Proof. We will apply Lemma 2.3. First, note that

lim sup
N→∞

( N∑
j=1,j 6=k(N)

wN (λj,N )2|(λj,N − θκ(N)−1,N )(θκ(N),N − λj,N )|1/N
)1/N

≤ 1,

3It will be shown in a future publication that for the pole sequence (0, 4, 0, 4, . . .) we have supp(σ−
µ) = [2−2

√
1− t2, 2+2

√
1− t2] corresponding to the circular black solid curve in Figure 4.3 (right),

and that for the pole sequence (ξ, ξ, . . .) with ξ ≥ 4 there holds supp(σ − µ) = [ 0, min{4, ξ(1− t2)} ]
which corresponds to an incomplete parabola.
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since
∑

j wN (λj,N )2 = 1, and the Ritz values lie in the convex hull of the eigenvalues,
and the latter are uniformly bounded by Assumption (H1). Thus, by designing
suitable monic polynomials SN of degree ≤ n(N) − 2 with set of zeros ZN ⊂ ΛN \
{λk(N),N}, we get from the second part of Lemma 2.3 and the fact wN (λj,N ) ≤ 1 that

lim sup
N→∞

|wN (λk(N),N )2(λk(N),N − θκ(N)−1,N )(θκ(N),N − λk(N),N )|1/(2N)

≤ lim sup
N→∞

max
j 6=k(N)

|SN/QN |1/N (λj,N )
|SN/QN |1/N (λk(N),N )

=: lim sup
N→∞

|SN/QN |1/N (λj(N),N )
|SN/QN |1/N (λk(N),N )

(5.3)

for some j(N) 6= k(N), where we recall that the monic polynomial QN has the set of
zeros ΞN . Note also that if there are no n(N)th Ritz values on the left of λk(N),N we
may apply the first part of Lemma 2.3 and obtain the same conclusion (5.3) with the
factor (λk(N),N − θκ(N)−1,N ) omitted on the left.

Let us first construct these polynomials SN depending on some η > 0: we define

V = {z ∈ R : Uµ−ν(z) ≥ F − η}

being a closed neighborhood of supp(σ − µ) by the semi-continuity of Uν and the
continuity of Uµ. By possibly making η > 0 a bit smaller we may suppose that
σ(∂V ) = 0. We then apply Lemma A.5 with

Z3,N = ΛN \ {λk(N),N}, Z1,N = Z3,N \ V, ρ2 = µ, i(N) = n(N)− 2,

and define ZN := Z2,N , obtained from ΛN \ {λk(N),N} by dropping elements from V ,
with χN (ZN ) → µ. Indeed, from the Assumptions (H1) and (H2) we get ρ3 = σ
and, since σ(∂V ) = 0, ρ1 = σ|R\V .

Then SN vanishes on ΛN \ (V ∪ {λk(N),N}), implying that λj(N),N lies in the
compact Λ ∩ V . By passing to subsequences if necessary, we may suppose without
loss of generality that λj(N),N → λ̃ ∈ Λ∩V , and, as in the assertion of the proposition,
λk(N),N → λ ∈ Λ. By construction and Assumption (H4) we have χN (ZN ) → µ and
χN (ΞN ) → ν. Then the Assumption (H6) together with (A.2) tells us that

lim
N→∞

log(|QN (λk(N),N )|1/N ) = −Uν(λ), (5.4)

lim
N→∞

log(|QN (λj(N),N )|1/N ) = −Uν(λ̃), (5.5)

whereas from the principle of descent (A.1)

lim sup
N→∞

log(|SN (λj(N),N )|1/N ) ≤ −Uµ(λ̃). (5.6)

For the term |SN (λk(N),N )|, following Kuijlaars we will use the separation condition
of Hypothesis (H3) in order to show that

lim
N→∞

log(|SN (λk(N),N )|1/N ) = −Uµ(λ). (5.7)

Before giving a proof, note that (5.4), (5.5), (5.6), and (5.7) imply that the logarithm
of the right-hand side of (5.3) is bounded above by

Uµ−ν(λ)− Uµ−ν(λ̃) ≤ Uµ−ν(λ)− F + η,
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where we have used that λ̃ ∈ V . Since η > 0 was arbitrary, the assertion of Proposi-
tion 5.1 follows.

It remains to establish (5.7). By Assumption (H3) or its equivalent formulation
of Lemma A.4, given any ε > 0 we find δ ∈ (0, 1/4) satisfying (A.9). Consider
J = [λ − δ, λ + δ]. By Assumption (H3), both measures µ ≤ σ do not have mass
points, and hence χN (ZN \ J) → µ|R\J . The principle of descent (A.2) allows to
conclude that

lim
N→∞

log
∣∣∣ ∏
λj,N∈ZN\J

(λk(N),N − λj,N )
∣∣∣1/N

= −Uµ|R\J (λ) = −Uµ(λ) + Uµ|J (λ),

where 0 ≤ Uµ|J (λ) ≤ ε by Lemma A.4. On the other hand, since by construction
every term in the sum occurring in (A.9) is positive, we also get from (A.9) that

0 ≥ log
∣∣∣ ∏
λj,N∈ZN∩J

(λk(N),N − λj,N )
∣∣∣1/N

≥ −ε.

Hence

0 ≤ lim sup
N→∞

∣∣∣ log(|SN (λk(N),N )|1/N ) + Uµ(λ)
∣∣∣ ≤ 2ε,

and the claim (5.7) follows for ε → 0.
Remark 5.2. The estimate (5.2) of Proposition 5.1 implies that

lim sup
N→∞

dist(λk(N),N ,ΘN )1/N ≤ exp(Uµ−ν(λ)− F ) lim sup
N→∞

wN (λk(N),N )−1/N , (5.8)

which is the statement of (3.1). To see this, note that if θκ(N)−1,N ≤ λk(N),N ≤
θκ(N),N then

lim sup
N→∞

dist(λk(N),N ,ΘN )1/N

≤ lim sup
N→∞

((λk(N),N − θκ(N)−1,N )(θκ(N),N − λk(N),N ))1/(2N)

= lim sup
N→∞

∣∣∣∣wN (λk(N),N )2(λk(N),N − θκ(N)−1,N )(θκ(N),N − λk(N),N )
wN (λk(N),N )2

∣∣∣∣1/(2N)

≤ exp(Uµ−ν(λ)− F ) lim sup
N→∞

wN (λk(N),N )−1/N ,

where in the last step we have used (5.2). If there is no Ritz value on the left or on
the right of λk(N),N , then (5.8) immediately follows by recalling that wN (λk(N),N ) ∈
[0, 1].

So far we have shown in Proposition 5.1 and Remark 5.2 upper bounds for the
(product of) distances of closest Ritz values on the left and on the right of a given
eigenvalue, which, however, does not allow us directly to give sharp asymptotics for
dist(λk(N),N ,ΘN ). We need to give a complete classification of how Ritz values inter-
lace with eigenvalues in intervals where each eigenvalue is exponentially close to some
Ritz value. Similar arguments have been used in [1, 21].

To do so, suppose that there exists a closed interval J and ε > 0 such that for all
sufficiently large N and for all λk,N ∈ J there holds

dist(λk,N ,ΘN ) ≤ exp(−2εN). (5.9)
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Due to (H3) we also know that for sufficiently large N and for all k there holds

|λk+1,N − λk,N | ≥ exp(−εN), (5.10)

since by Lemma A.4 log(1/|λk+1,N − λk,N |) ≤ max{Nε, log(1/(4δ))} for some δ > 0
depending on ε. It follows from (5.9) and (5.10) that we may choose N large enough
such that the exp(−2εN)–neighborhoods of the λk,N ∈ J do not intersect.

We say that λk,N ∈ J is (strictly) left-approached if there is a Ritz value from ΘN

in the exp(−2εN)–neighborhood of λk,N being ≤ λk,N (and < λk,N ). Similarly, we
speak of (strictly) right-approached eigenvalues. From (5.9) we see that each λk,N ∈ J
is left- or right-approached, or even both. Moreover, since the above neighborhoods
do not intersect, each λk,N ∈ J is approached by a different Ritz value.

We now recall the interlacing property that any open interval spanned by two
consecutive Ritz values does contain an eigenvalue. It follows that if λk,N ∈ J is
left-approached then λj,N ∈ J is strictly left-approached for j = k − 1, and thus for
all j < k. By the same argument, if λk,N ∈ J is right-approached then λj,N ∈ J is
strictly right-approached for j = k + 1, and thus for all j > k. So we only switch at
most once within the interval J from left-approached to right-approached eigenvalues.

We have enumerated the different cases in Figure 5.1 and Figure 5.2, where first
we suppose that J does not contain any extremal eigenvalues. In Case 1(a) and
Case 1(b) there is no switching, since either the right-most eigenvalue in J is strictly
left-approached (and so are the others), or the left-most eigenvalue in J is strictly
right-approached (and so are the others). By the interlacing property there is at
most one Ritz value θ ∈ J outside of the exp(−2εN)–neighborhoods of the λk,N ∈
J , which is described in Case 2; here the eigenvalues λj,N ∈ J ∩ (θ, +∞) must be
strictly right-approached and λj,N ∈ J ∩ (−∞, θ) must be strictly left-approached.
In Case 3 one neighborhood contains more than one Ritz value, and thus we must
have strict approximation. In Case 5, we have an eigenvalue which is also left- and
right-approached, since it is hit by a Ritz value; there cannot be any further Ritz
values in the same neighborhood according to the interlacing property. Finally, in
the remaining Case 4 we have λk,N , λk+1,N ∈ J which are approached from different
sides.

Case 1(b)Case 1(a)

Case 3

Case 2

Case 4 Case 5

*lk *lk * *lk *

qk

Fig. 5.1. Examples of relative positions of the Ritz values and the eigenvalues in a closed
interval J not containing the extremal eigenvalues. The Ritz values are depicted by circles, the
eigenvalues are depicted by black dots. The λk∗(N) and λk∗∗(N) indicate the exceptional positions
in Proposition 5.3 and in the proof of the lower bound in Theorem 3.1.

In Figure 5.2 we have drawn the corresponding situations where J contains one
extremal eigenvalue (it cannot contain both): since Ritz values lie in the interior of
the convex hull of the eigenvalues, we have similar phenomena as in the Case 1(a)
and 1(b).

Proposition 5.3. Suppose the Assumptions (H3), (H5), and Equation (5.2)
of Proposition 5.1 hold. Then in a closed interval J ⊂ {x ∈ R : Uµ−ν(x) < F}, all
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Case 6(b)Case 6(a)

lmax lmin

Fig. 5.2. The relative positions of Ritz values and eigenvalues in a closed interval J containing
an extremal eigenvalue. The Ritz values are depicted by circles, the eigenvalues are depicted by black
dots. The eigenvalues λmin and λmax denote the smallest and largest eigenvalue, respectively.

sequences J 3 λk(N),N → λ for N →∞ satisfy

lim sup
N→∞

dist(λk(N),N ,ΘN )1/N ≤ exp(2(Uµ−ν(λ)− F )), (5.11)

with the possible exclusion of at most one unique “exceptional index” k∗(N).
Proof. The remainder of the proof is inspired by similar arguments in [1,21]. We

use the notation from Proposition 5.1. Equation (5.2) implies (5.8) (see Remark 5.2),
and using (H5) we obtain for all λk(N),N ∈ J

lim sup
N→∞

min
j
|λk(N),N − θj,N |1/N ≤ exp

(
Uµ−ν(λ)− F

)
. (5.12)

We will tighten up this bound to obtain Equation (5.11).
Depending on the closed interval J ⊂ {x ∈ R : Uµ−ν(x) < F}, we can choose

ε > 0 such that for all λk(N),N ∈ J , and for N large enough

min
j
|λk(N),N − θj,N |1/N ≤ exp(ε) max

x∈J
exp(Uµ−ν(x)− F ) ≤ exp(−2ε) < 1.

To continue the proof we have to exclude Case 3 of Figure 5.1. If the Ritz values
and eigenvalues are positioned as in Case 3, we take k∗(N) such that λk∗(N) coincides
with the middle eigenvalue as depicted in Case 3, so this eigenvalue is the “exceptional
eigenvalue”.

Assume as in Proposition 5.1 that λk(N),N ∈ [θκ(N)−1,N , θκ(N),N ]. From the dis-
cussion about the position of the Ritz values and due to the exclusion of Case 3 we
know that each eigenvalue is approached by a single Ritz value. Without loss of
generality we assume that λk(N),N is approached by θκ(N),N instead of θκ(N)−1,N , im-
plying minj |λk(N),N − θj,N | = |λk(N),N − θκ(N),N | ≤ exp (−2εN), and also |λk(N),N −
θκ(N)−1,N | > exp (−2εN), which leads to

exp (−2ε) |λk(N),N − θκ(N),N |1/N <
(
|λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |

)1/N
.

Thus by (5.12) and (H5),

exp(−2ε) lim sup
N→∞

min
j
|λk(N),N − θj,N |1/N

= exp(−2ε) lim sup
N→∞

|λk(N),N − θκ(N),N |1/N

≤ lim sup
N→∞

(
|λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |

)1/N

≤ exp(2(Uµ−ν(λ)− F )).

For ε → 0 we obtain (5.11).
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To prove the lower bound in Theorem 3.1, extra results related to the limiting
distribution of the Ritz values are needed (see [2, Theorem 1.3] which generalizes [14,
Theorem 3.3]).

Theorem 5.4. Under the Assumptions (H1)–(H6), let the positive finite Borel
measure µ be the unique minimizer of µ1 7→ I(µ1)− 2I(ν, µ1) within Mσ

t and define
F as the maximum of Uµ−ν in the whole complex plane. Then we have

χN (ΘN ) → µ, and lim
N→∞

∥∥∥(PN/QN )(AN )
bN

‖bN‖

∥∥∥1/N

= exp(−F ).

Proof. Recall from Lemma 2.3 that PN is the n(N)th monic orthogonal polyno-
mial with respect to the scalar product with varying weights

〈p, q〉 =
〈

(q/QN )(AN )
bN

‖bN‖
, (p/QN )(AN )

bN

‖bN‖
〉

=
∑

λ∈ΛN

wN (λ)2

QN (λ)2
p(λ)q(λ).

The assumptions of [2, Theorem 1.3] are readily verified. The assumption on the
connectedness of supp(σ) mentioned in [2] is just to insure that supp(σ−µ)∩supp(µ) 6=
∅, which is trivial in our case since supp(µ) = supp(σ) by Lemma A.1(c).

We are now prepared to conclude.
Proof of Theorem 3.1. In view of Proposition 5.3 it only remains to prove the

lower bound

lim inf
N→∞

min
j
|λk(N),N − θj,N |1/N ≥ exp(2(Uµ−ν(λ)− F )).

Suppose that λk(N),N is located in an interval [θκ(N)−1,N , θκ(N),N ]; otherwise the
reasoning becomes simpler, compare with Lemma 2.3. Let us denote by d < ∞
the diameter of the convex hull of the compact set Λ, which therefore is an upper
bound for the distance between an arbitrary eigenvalue and a Ritz value, since both
eigenvalues and Ritz values are contained in this convex hull.

We factor the above lim inf into three parts

lim inf
N→∞

min
j
|λk(N),N − θj,N |1/N

≥ lim inf
N→∞

( |λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |
d

)1/N

≥ lim inf
N→∞

(
1

wN (λk(N),N )

)2/N

lim inf
N→∞

( |λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |
|PN/QN |(λk(N),N )

)2/N

lim inf
N→∞

(
wN (λk(N),N )2|PN/QN |2(λk(N),N )

|λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |

)1/N

, (5.13)

and bound these three factors separately from below.
The first factor. This is covered by (H5).
The second factor. Using Theorem 5.4, we obtain by the principle of descent (A.1)

for PN and by (A.2) for QN that

lim sup
N→∞

( |PN/QN |(λk(N),N )
|λk(N),N − θκ(N)−1,N ||λk(N),N − θκ(N),N |

)1/N

≤ exp(−Uµ−ν(λ)),

and thus a lower bound for the second factor in Equation (5.13).
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The third factor. We use the Conventions (5.1) and Lemma 2.3 with the poly-
nomial SN (x) = PN (x)/

(
(x− θκ(N)−1,N )(x− θκ(N),N )

)
. Then the right-hand side of

Equation (2.8) becomes zero and we get

0 =
N∑

j=1

aj , aj :=
wN (λj,N )2(PN/QN )2(λj,N )(

λj,N − θκ(N)−1,N

) (
λj,N − θκ(N),N

) .
Bringing the negative terms in the summation to the left and leaving the positive ones
on the right yields ∑

λj,N ∈

[θκ(N)−1,N ,θκ(N),N ]

|aj | =
∑

λj,N /∈

[θκ(N)−1,N ,θκ(N),N ]

|aj |. (5.14)

The interval [θκ(N)−1,N , θκ(N),N ] contains at most two eigenvalues (Cases 4 and 5 in
Figure 5.1). In Case 5, one of the terms equals zero and we exclude λk∗∗(N),N . Hence
in Cases 1, 2, 3, and 5, the above equation has only one term in the sum on the
left-hand side, namely ak(N). Let us distinguish between one or two terms.

A single term on the left-hand side of Equation (5.14). This corresponds to Cases
1, 2, 3, and 5 (excluding λk∗∗(N) for Case 5). We have

|ak(N)| =
∑

λj,N /∈
[θκ(N)−1,N ,θκ(N),N ]

|aj | =
1
2

N∑
j=1

|aj |

≥ 1
2d2

N∑
j=1

wN (λj,N )2(PN/QN )2(λj,N )

=
1

2d2

∥∥∥∥(PN/QN )(A)
bN

‖bN‖

∥∥∥∥2

,

where the first two equalities follow from (5.14), and the inequality follows from the
definition of aj and d.

Two terms on the left-hand side of Equation (5.14). This is Case 4. Denote the
two eigenvalues in [θκ(N)−1,N , θκ(N),N ] by λj(N)−1,N and λj(N),N . Then we exclude the
index k∗∗(N) ∈ {j(N)−1, j(N)} corresponding to the smaller of the two terms on the
left-hand side of (5.14), and get for the larger one with index k(N) ∈ {j(N)−1, j(N)}

|ak(N)| ≥
1
2
(
|ak(N)|+ |ak∗∗(N)|

)
=

1
2

∑
λj,N∈

[θκ(N)−1,N ,θκ(N),N ]

|aj |

≥ 1
4d2

∥∥∥∥(PN/QN )(A)
bN

‖bN‖

∥∥∥∥2

.

Thus, in both cases we get using Theorem 5.4 that for all k(N) different from
k∗∗(N),

lim
N→∞

(
wN (λk(N),N )2(PN/QN )2(λk(N),N )∣∣λk(N),N − θκ(N)−1,N

∣∣ ∣∣λk(N),N − θκ(N),N

∣∣
)1/N

≥ exp(−2F ).
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Combining the estimates for all three factors leads to the lower bound

lim inf
N→∞

min
j
|λk(N),N − θj,N |1/N ≥ exp(2(Uµ−ν(λ)− F )),

as claimed in the beginning of the proof.
Note that in Theorem 3.1 no distinction is made between the indices k∗(N) and

k∗∗(N). Combining Proposition 5.3 and the above claim, and taking k∗(N) from
Theorem 3.1 as either k∗(N) from Proposition 5.3 or k∗∗(N) from this proof (which
means excluding at most one eigenvalue in Cases 3, 4, and 5) proves the equality in
Theorem 3.1.
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Fig. 5.3. Ritz values of order n = 1, . . . , N for equidistant eigenvalues on [−1, 1], eigencom-
ponents 1/

√
N , and poles (ξ,−ξ, ξ,−ξ, . . .), ξ = 10−5. On the left for N = 50 even, we find for

odd n that the Ritz value 0 is not close to any of the eigenvalues (Case 2), and for even n Case 4
occurs. On the right for N = 51 odd, we find for odd n that the Ritz value 0 hits the exceptional
eigenvalue 0 (Case 5), and for even n there are two Ritz values not so close to the exceptional
eigenvalue 0 (Case 3), that is, there is a delay in the convergence.

In order to illustrate the phenomenon of exceptional indices, we show in Figure 5.3
some numerical experiences for equidistant eigenvalues λj,N = 2j/(N + 1) − 1 on
[−1, 1], equal eigencomponents wN (λj,N ) = 1/

√
N , and the symmetric pole sequence

(ξ,−ξ, ξ,−ξ, . . .) for ξ = 10−5. We have chosen a smaller N ∈ {50, 51} in order to
be able to distinguish the different Ritz values visually. For odd n, one observes by
symmetry that the nth orthogonal rational function of (2.7) is odd, and hence Cases
2 and 5 must occur around the origin depending on the parity of N . For even n, this
orthogonal rational function is “nearly” even, giving raise to the exceptional Cases 3
and 4.

5.2. Proof of Theorem 3.2. In view of Proposition 5.3, we have to show that
the statement of Proposition 5.1 still remains valid even if we replace (H6) by the
much weaker Assumption (H6’). However, if the poles in ΞN are allowed to approach
the set of eigenvalues ΛN then in general the limits (5.4) and (5.5) are no longer true.
Here (5.4) is not essential: from the principle of descent (A.1) we obtain the weaker
relation

lim sup
N→∞

log(|QN (λk(N),N )|1/N ) ≤ −Uν(λ), (5.15)

which is sufficient for the conclusions of Proposition 5.1. But, if the distance between
the set of poles ΞN and λj(N),N decays exponentially in N , then (5.5) will be wrong.
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By definition of j(N) in the proof of Proposition 5.1 we have λj(N),N ∈ ΛN \ ZN , so
that at least the eigenvalues being very close to poles should be part of the set ZN

of zeros of the polynomial SN . Remember that an important ingredient in the proof
of Proposition 5.1 was that eigenvalues in R \ V = {z : Uµ−ν(z) < F − η} are part
of ZN . Thus there is already a first question whether there are not too many such
eigenvalues, since ZN should contain at most n(N) − 2 ≈ tN elements. In addition,
a single criterion on dist(λj,N ,ΞN ) is probably not sufficient for insuring (5.5).

In this paper we suggest to make a link with the separation condition (H3) of
eigenvalues, but this requires to specify more precisely the way how the Nth poles
cluster around the Nth eigenvalues. We show in Lemma 5.6 that if we include in
ZN all critical eigenvalues in the sense of Definition 5.5, then we may insure a limit
relation as in (5.5). The number of critical eigenvalues, at least far from supp(ν0) and
from the boundary of supp(σ) with ν0 as in Lemma A.1(e), can be monitored by the
pole measure ν with the help of Lemma 5.7, and thus by µ according to the first part
of Lemma A.1(e).

It turns out that a major technical difficulty in our approach comes from the
fact that supp(ν0) is not necessarily separated4 from supp(σ − µ), and hence the
neighborhood V from the proof of Proposition 5.1 might contain parts of supp(ν0).
We will include in ZN all eigenvalues in a neighborhood of supp(ν0), which might lead
to an overshoot, i.e., we are no longer able to discretize the equilibrium measure µ
but only a measure µη ∈Mσ

t with Uµ−µη

being “small”. The limit η → 0 will enable
us to conclude.

For a moment let us suppose that we have found

ZN ⊂ ΛN \ {λk(N),N} such that χN (ZN ) → µη ∈Mσ
t , (5.16)

the construction of µη to be specified in Lemma 5.8, and the discretization procedure
in our proof of Theorem 3.2 below.

Recall that ΛN contains the elements λ1,N < · · · < λN,N . In the next definition,
we adapt the convention that λj,N = −∞ if j ≤ 0 and λj,N = +∞ if j > N .

Definition 5.5. Let δ ∈ (0, 1/4) be sufficiently small to be specified later. An
eigenvalue λj,N ∈ ΛN will be called m-critical for some integer m ≥ 0 if the interval(λj−m−1,N + λj−m,N

2
,
λj+m,N + λj+m+1,N

2

)
∩
(
λj,N − δ, λj,N + δ

)
,

called m-neighborhood of λj,N , contains ≥ 6m+1 poles out of ΞN counting multiplic-
ities. Define Zcrit

N ⊂ ΛN to be the set of all critical eigenvalues, that is, eigenvalues
which are m-critical for some m ≥ 0.

Lemma 5.6. If ΛN \ Zcrit
N 3 λ`(N),N → λ̃ then

lim
N→∞

log(|QN (λ`(N),N )|1/N ) = −Uν(λ̃).

Proof. Let ε > 0. Note that eigenvalues being not critical for δ = δ0 remain non-
critical for all δ ≤ δ0. Hence we may suppose without loss of generality that δ > 0 is as
in Lemma A.4, and that in addition ν(∂J) = 0 for the interval J = [λ̃− δ/2, λ̃ + δ/2],
since this is true for almost all δ > 0.

4Of course, we could add in our assumptions the condition supp(ν0)∩ supp(σ−µ) = ∅, however,
this condition seems for us to be too restrictive and difficult to verify.
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Let us show that we are able to monitor the poles from ΞN in an open interval
(λ`(N),N , λ`(N),N + δ). We introduce the partition Im,`(N),N defined for m ≥ 0 by[λ`(N)+m−1,N + λ`(N)+m,N

2
,
λ`(N)+m,N + λ`(N)+m+1,N

2

)
∩
(
λ`(N),N , λ`(N),N + δ

)
.

Note that for m ≥ 1 there holds

λ`(N)+m,N − λ`(N),N ≤ 2
(λ`(N)+m−1,N + λ`(N)+m,N

2
− λ`(N),N

)
≤ 2δ,

and hence for ξ ∈ Im,`(N),N we have

log
1

|λ`(N),N − ξ|
≤ log

1

|λ`(N),N − λ`(N)+m−1,N+λ`(N)+m,N

2 |

≤ log
2

|λ`(N),N − λ`(N)+m,N |
≤ 2 log

1
|λ`(N),N − λ`(N)+m,N |

,

the last inequality following from 2 ≤ 1/(2δ) ≤ 1/|λ`(N)+m,N − λ`(N),N |.
By Definition 5.5, there are at most 6m poles out of ΞN on the right of λ`(N),N

in an m-neighborhood of λ`(N),N for any m ≥ 0, that is, in the union I0,`(N),N ∪
I1,`(N),N ∪ · · · ∪ Im,`(N),N . By shifting if necessary these poles a bit to the left, we
obtain a situation where at most 6 poles lie in an interval Im,`(N),N for m ≥ 1, and
no poles in I0,`(N),N . It follows that, for N ≥ 1,

0 ≤ 1
N

∑
ξ∈ΞN∩(λ`(N),N ,λ`(N),N+δ)

log
1

|λ`(N),N − ξ|

=
1
N

∞∑
m=1,Im,`(N),N 6=∅

∑
ξ∈ΞN∩Im,`(N),N

log
1

|λ`(N),N − ξ|

≤ 12
N

∑
λ`(N),N <λj,N≤λ`(N),N+2δ

log
1

|λ`(N),N − λj,N |
≤ 12ε,

where in the last step we have applied the inequality (A.9) of Lemma A.4. A similar
conclusion is obtained for the poles in ΞN∩(λ`(N),N−δ, λ`(N),N ) on the left of λ`(N),N .

We write − log(|QN (λ`(N),N )|1/N ) = U1,N + U2,N with

U1,N := UχN (ΞN\J)(λ`(N),N ), U2,N := UχN (ΞN∩J)(λ`(N),N ),

and note that U1,N → Uν(λ̃)−Uν|J (λ̃) for N →∞ by (H4), (A.2), and the assump-
tion ν(∂J) = 0. Also, from above it follows that 0 ≤ U2,N ≤ 24ε, and, taking into
account (A.1), we conclude that 0 ≤ Uν|J (λ̃) ≤ 24ε. Thus, for ε → 0 we obtain the
claim of Lemma 5.6.

Lemma 5.7. Denote by B(δ) the closed subset of supp(σ) of points having a
distance ≥ 2δ to ∂ supp(σ) and supp(ν0), with ν0 as in Lemma A.1(e). Then for any
ρ being a weak∗ accumulation point of the sequence of normalized counting measures
χN (Zcrit

N ) we have ρ|B(δ) ≤ ν|B(δ).
Proof. For each λj,N ∈ Zcrit

N ∩B(δ) there exists a minimal m = m(j, N) ≥ 0 such
that λj,N is m-critical. The at least 6m + 1 poles in the m-neighborhood of λj,N are
elements of m-neighborhoods of at most 4m other eigenvalues λk,N , since a nonempty
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intersection of the corresponding m-neighborhoods implies that 1 ≤ |j − k| ≤ 2m.
As a consequence, for each λj,N ∈ Zcrit

N ∩ B(δ) we may select a pole ξ`(j,N),N ∈ ΞN

lying in the m(j, N)-neighborhood of λj,N , and these selected poles all have distinct
indices. We claim that

lim
N→∞

max{|λj,N − ξ`(j,N),N | : λj,N ∈ Zcrit
N ∩B(δ)} = 0. (5.17)

Suppose that (5.17) is wrong. By (H1), we may pass to subsequences if necessary and
obtain λ`N ,N ∈ Zcrit

N ∩B(δ) with λ`N ,N → a, and the lower and upper bounds of their
m(`N , N)-neighborhoods tending to some [b, c] ⊂ [a− δ, a + δ] ⊂ supp(σ) \ supp(ν0),
with a ∈ [b, c] ∩ B(δ), and c − b > 0. By construction, these neighborhoods contain
at most 2m(`N , N) + 1 eigenvalues. Since σ has no mass points, we conclude that

σ([b, c]) = lim sup
N→∞

number of eigenvalues in m(`N , N)–neighborhood of λ`N ,N

N

≤ lim sup
N→∞

2m(`N , N) + 1
N

,

whereas

ν([b, c]) ≥ lim sup
N→∞

number of poles in m(`N , N)–neighborhood of λ`N ,N

N

≥ lim sup
N→∞

6m(`N , N) + 1
N

≥ 3σ([b, c]).

By construction of B(δ) we know that (b + c)/2 ∈ supp(σ) and hence (ν−σ)([b, c]) ≥
2σ([b, c]) > 0. Hence from the Jordan decomposition we get ν0([b, c]) > 0, in contra-
diction with the fact that the interval [a − δ, a + δ] has an empty intersection with
supp(ν0) by construction of B(δ). Thus (5.17) holds. Let now f be a continuous
and nonnegative function, then it is uniformly continuous on the compact set Λ, and
(5.17) implies that∫

f(x) dρ|B(δ)(x) ≤ lim sup
N→∞

∑
λj,N∈Zcrit

N ∩B(δ)

f(λj,N )
N

= lim sup
N→∞

∑
λj,N∈Zcrit

N ∩B(δ)

f(ξ`(j,N),N )
N

≤ lim
N→∞

∑
ξj,N∈ΞN

f(ξj,N )
N

=
∫

f(x) dν(x),

where in the first inequality we have used the definition of ρ, and in the second
inequality the facts that f is nonnegative and that our selected poles ξ`(j,N),N have
distinct indices. Hence ρ|B(δ) ≤ ν, as claimed in Lemma 5.7.

Lemma 5.8. Let ν0 be as in Lemma A.1(e), where we suppose that ν0 6= 0
and supp(σ) and supp(ν0) are finite unions of closed intervals. Let V be a closed
neighborhood of supp(σ − µ), and define for η > 0 the sets V (η) = V ∩ B(η), with
B(η) as in Lemma 5.7, and B(η)c = supp(σ) \B(η), V (η)c = supp(σ) \ V (η). Then,
for sufficiently small η, the measure

µη := σ|V (η)c + ν|V (η) +
(
1− (σ − µ)(V (η)c)

(µ− ν)(V (η))

)
(µ− ν)|V (η)
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is well-defined, µη ∈Mσ
t , and

lim sup
η→0

max
z∈Λ

|Uµη−µ(z)| = 0.

Proof. By assumption on supp(σ) and supp(ν0), the set B(η)c \ supp(ν0) consists
of a finite number of intervals, and, for sufficiently small η, these intervals are disjoint
and of length ≤ 2η, and their number, say, k, does not depend on η.

We first show that (µ − ν)(V (η)) > 0 for sufficiently small η > 0. Write shorter
µ0 = (µ− ν)|R\supp(ν0), then µ0 ≥ 0 by Lemma A.1(e), and (µ− ν)|V (η) = µ0|V (η) by
construction of B(η). Since trivially µ0 ≤ σ, we find that

(µ− ν)(V (η)) = µ0(V (η)) ≥ µ0(V )− µ0(B(η)c) ≥ µ0(V )− σ(B(η)c \ supp(ν0)).

Since σ has no mass points, we find according to the particular structure of B(η)c \
supp(ν0) that σ(B(η)c \ supp(ν0)) → 0 for η → 0. Also, by Lemma A.1(e) we have
that supp(σ − µ) ⊂ supp(σ0) ⊂ R \ Int(supp(ν0)), and, since ∂ supp(ν0) is finite but
not supp(σ−µ), there exists λ ∈ supp(σ−µ)\supp(ν0). Again from Lemma A.1(e) we
conclude that λ ∈ supp(µ0), and V is a neighborhood of λ, implying that µ0(V ) > 0,
and thus µ0(V (η)) > 0 for sufficiently small η > 0.

Secondly, we recall that supp(σ − µ) ⊂ R \ Int(supp(ν0)), which implies that
(σ−µ)(supp(ν0)) = 0. It follows that 0 ≤ (σ−µ)(V (η)c) = (σ−µ)(V (η)c\supp(ν0)) ≤
σ(B(η)c \ supp(ν0)), where the right-hand term tends to 0 for η → 0. Thus

lim
η→0

(σ − µ)(V (η)c)
(µ− ν)(V (η))

= 0. (5.18)

We therefore have shown that, for sufficiently small η > 0, the measure µη is well-
defined, is positive (since (µ − ν)|V (η) = µ0|V (η) ≥ 0), satisfies the inequality µη ≤
σ|V (η)c + ν|V (η) + (µ− ν)|V (η) ≤ σ, and

µη(R) = σ(V (η)c) + ν(V (η)) + (µ− ν)(V (η))− (σ − µ)(V (η)c) = µ(R) = t,

and thus µη ∈Mσ
t .

It remains to analyze the potential of

µη − µ = (σ − µ)|V (η)c − (σ − µ)(V (η)c)
(µ− ν)(V (η))

(µ− ν)|V (η),

where (σ − µ)|V (η)c = (σ − µ)|V (η)c\supp(ν0).

We want to show that the maximum of the potential on Λ of each of the two measures
in this difference tends to zero for η → 0. For the first potential, (σ−µ)(V (η)c) tends
to 0 for η → 0 by (5.18), and hence

lim inf
η→0

max
z∈Λ

U (σ−µ)|V (η)c (z) ≥ 0

by (A.1). On the other hand, since the set B(η)c\supp(ν0) larger than V (η)c\supp(ν0)
can be written as a union J1 ∪ · · · ∪ Jk of disjoint intervals J` of length ≤ 2η ≤ 1, we
get from the maximum principle for logarithmic potentials [38, Corollary II.3.3]

max
z∈Λ

U (σ−µ)|V (η)c (z) ≤
k∑

`=1

sup
x∈J`

U (σ−µ)|V (η)c∩J` (x) ≤
k∑

`=1

sup
x∈J`

Uσ|J` (x),
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where the right-hand side tends to 0 for η → 0 by Lemma A.4. In order to discuss
the second potential, we write

V (η) = V (η) \ supp(ν0) = [V \ supp(ν0)] \
k⋂

`=1

(J` ∩ V )

and get as before from (A.1) and Lemma A.4 that

lim sup
η→0

max
x∈Λ

|U (µ−ν)|V (η)(x)− U (µ−ν)|V \supp(ν0)(x)|

= lim sup
η→0

max
x∈Λ

∣∣∣ k∑
`=1

U (µ−ν)|J`∩V (x)
∣∣∣ = 0.

By Lemma A.1(e), 0 ≤ (µ − ν)|V \supp(ν0) ≤ σ and hence its potential is continuous.
Thus |U (µ−ν)|V (η)(x)| is uniformly bounded for x ∈ Λ and sufficiently small η ≥ 0,
and (5.18) yields the last claim of Lemma 5.8.

We are now prepared to conclude in our proof of Theorem 3.2. If ν ≤ σ and
thus ν ∈ Mσ

t then Uµ−ν(x) − F = 0 for all x ∈ C by Lemma A.1(b). Since all Ritz
values lie in the convex hull of the eigenvalues and hence in the convex hull of Λ being
compact by Assumption (H1), we conclude that

lim sup
N→∞

dist(ΛN ,ΘN )1/N ≤ 1, lim sup
N→∞

wN (λk(N),N )−1/N ≥ 1,

the latter relation following from wN (λk(N),N ) ≤ 1, and the assertion of Theorem 3.2
is trivial.

Suppose now that ν 6≤ σ, and thus ν0 6= 0 in the Jordan decomposition ν − σ =
ν0 − σ0. According to Proposition 5.3, we only have to show that the relation (5.2)
of Proposition 5.1 holds. Let ε > 0, and define

V = V (ε) = {x ∈ R : Uµ−ν(x) ≥ F − ε}.

Note that Uν is finite on V (2ε), and thus Uµ−ν is continuous on V (2ε) by the assump-
tion of Theorem 3.2. It follows from Lemma A.1(c) that V is a closed neighborhood
of supp(σ − µ). We now choose η > 0 sufficiently small such that the measure µη of
Lemma 5.8 is an element of Mσ

t and |Uµη

(x)− Uµ(x)| ≤ ε for all x ∈ Λ.
We may apply the discretization procedure of Lemma A.5 with

Z3,N = ΛN \ {λk(N),N}, Z1,N = {λj,N ∈ Z3,N : λj,N ∈ V (η)c ∪ Zcrit
N }, ρ2 = µη,

and i(N) = n(N)−2. Indeed, with the notation of Lemma A.5, the inequality ρ1 � ρ2

follows from Lemma 5.7 with δ = η, and ρ2 � ρ3 is a consequence of Lemma 5.8. This
leads to ZN := Z2,N satisfying χN (ZN ) → µη, as claimed in (5.16). Defining

SN (x) =
∏

λ∈ZN

(x− λ),

we note that the maximum of |SN/QN | over ΛN \ {λk(N),N} is attained at some
λj(N),N ∈ Z3,N \ ZN ⊂ Z3,N \ Z1,N , that is, λj(N),N 6= λk(N),N is an element of
ΛN ∩V being non-critical for δ = η. By passing to subsequences if necessary, suppose
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that λj(N),N → λ̃, and thus λ̃ ∈ V . Then the principle of descent (A.1) for SN

together with Lemma 5.6 for QN gives

lim sup
N→∞

log(|SN (λj(N),N )/QN (λj(N),N )|1/N ) ≤ Uν−µη

(λ̃) ≤ Uν−µ(λ̃) + ε ≤ −F + 2ε,

whereas the eigenvalue separation (H3) for SN (compare with (5.7)) and the principle
of descent (A.1) for QN (compare with (5.15)) leads to

lim inf
N→∞

log(|SN (λk(N),N )/QN (λk(N),N )|1/N ) ≥ Uν−µη

(λ) ≥ Uν−µ(λ)− ε.

The conclusion follows as in Proposition 5.1 after ε → 0.

5.3. Proof of Corollary 3.3. Consider the matrix AN = (A− τI)−1, then by
assumption on τ we get that its eigenvalues λk,N = 1/(λk,N − τ) lie in some compact
interval Λ ⊂ (0,+∞). Similarly, the new poles ξk,N = 1/(ξk,N−τ) lie in some compact
set Ξ. Defining the corresponding denominator polynomials

q
j,N

(x) =
j∏

k=1

(x− ξ
k,N

),

we may write according to (2.5)

vj+1,N = qj,N (AN )−1pj,N (AN )
bN

‖bN‖
= q

j,N
(AN )−1p

j,N
(AN )

bN

‖bN‖

with suitable polynomials p
j,N

of degree ≤ j. In other words, the rational Krylov
space Krat

n (AN ,bN ) with poles ξ1,N , . . . , ξn−1,N coincides with the rational Krylov
space Krat

n (AN ,bN ) with poles ξ
1,N

, . . . , ξ
n−1,N

.
However, the corresponding set ΘN of transformed nth rational Ritz values θk,N =

1/(θk,N −τ) ∈ [a, b] does not give the nth rational Ritz values for AN since, according
to (2.7),

ṽn+1,N = qn−1,N (AN )−1p̃n,N (AN )
bN

‖bN‖
= q

n,N
(AN )−1p̃

n,N
(AN )

bN

‖bN‖

with suitable polynomials p̃
n,N

of degree ≤ n, that is, instead of the pole ξ
n,N

= ∞
we have a finite pole ξ

n,N
= 0 (like for harmonic rational Ritz values).

Observe that

q
n,N

(x)q
n−1,N

(x) = xq
n−1,N

(x)2 > 0

for all x ∈ Λ containing the spectrum ΛN of AN . Thus our basic tool Lemma 2.3
may be generalized: p

n,N
is a discrete orthogonal polynomial with the new weights

wN (λj,N )2/(q
n,N

(λj,N )q
n−1,N

(λj,N )), and we obtain upper bounds for (λk(N),N −
θκ(N)−1,N )(θκ(N),N − λk(N),N ) with a similar substitution. In particular, the results
of Theorem 3.1 and Theorem 3.2 on dist(λk(N),N ,ΘN ) remain valid. Passing to the
chordal metric we get

distchord(λk(N),N ,ΘN ) = min
j

chord(λk(N),N , θj,N ) = min
j

|λk(N),N − θj,N |√
1 + λ2

k(N),N

√
1 + θ2

j,N

= min
j

|λk(N),N − θj,N |√
λ2

k(N),N + (1 + τλk(N),N )2
√

θ2
j,N + (1 + τθj,N )2

,
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the latter expression being bounded below and above by dist(λk(N),N ,ΘN ) times some
positive constant, since λk(N),N , θj,N both lie in the compact interval Λ ⊂ (0,∞).
Thus the first part of Corollary 3.3 follows.

Finally, in order to see that the rate of convergence is independent of the choice
of τ , we consider τ1 6= τ2 as in Corollary 3.3, and denote by σj and νj for j = 1, 2 the
limit measures resulting from the modified conditions (H2) and (H4), and by µ

j
the

corresponding extremal measures. Then, considering the change of variables

x = τ1 + 1/x1 = τ2 + 1/x2,

elementary calculus shows that σ1(x1) = σ2(x2) = σ(x), with χN (ΛN ) → σ on the
Riemann sphere. Similarly, we have ν1(x1) = ν2(x2) = ν(x), with χN (ΞN ) → ν on
the Riemann sphere (note that ν might have a mass point at ∞). In particular, we
may define µ(x2) = µ

1
(x1) such that µ ∈ Mσ2

t , and observe that the potential of
µ − ν2 at x2 differs from the potential of µ

1
− ν1 at x1 only by a constant. From

Lemma A.1(d) we conclude that µ
2

= µ, and hence the rate of convergence is in fact
independent of the choice of τ .

6. Conclusions. We have given a theoretical background for designing numeri-
cal methods to compute parts of the spectrum of large sparse matrices. It was shown
that rational Ritz values are indeed attracted by the poles. Moreover, our quantifica-
tion of the rate of convergence via logarithmic potential theory may help to overcome
a weak point of the rational Krylov method: how to choose the free parameters,
namely the poles, in order to be sure to obtain excellent approximations of particular
eigenvalues (like for instance the extremal ones).

Our findings are of an asymptotic nature, and they do not take into account
the effect of finite precision arithmetic. Nevertheless, they might be helpful for a
better understanding of related methods using, e.g., restarting. There is also some
potential impact on improved Krylov subspace techniques for approximating functions
of symmetric matrices, and in particular to explain superlinear convergence behavior.
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Appendix A. Tools from potential theory.
With the discrete set ΞN and the monic polynomial QN as before, we find that

log(|QN (z)|1/N ) = −UχN (ΞN )(z), QN (z) =
∏

ξj,N∈ΞN

(z − ξj,N ),

which explains that logarithmic potential theory is the right tool for studying weak
asymptotics of polynomials. One important tool is the so-called principle of descent
proved, e.g., in [38, Theorem I.6.8]. Since this principle is heavily used in our reason-
ing, we shortly recall it here: if S is compact and (µn) is a sequence of finite positive
Borel measures with supp(µn) ⊂ S then

for zn → z and µn → µ : lim inf
n→∞

Uµn(zn) ≥ Uµ(z), (A.1)

for zn → z 6∈ S and µn → µ : lim
n→∞

Uµn(zn) = Uµ(z). (A.2)

Other more sophisticated aspects of potential theory will be hidden in the proofs, but
the statements should be accessible also for non-experts.

If Uν is continuous on supp(σ), our constrained energy problem is classical, see
for instance [14] or [2, Theorem 1.1]. Here we discuss a more general case also allowing
for ν having mass points in supp(σ).

Lemma A.1. Assume that σ, ν are finite positive Borel measures with compact
support, 0 < t = ‖ν‖ < ‖σ‖, such that Uσ is continuous, and Uν is continuous at
each point of supp(σ) where it is finite. Denote as before by Mσ

t the set of positive
Borel measures µ such that σ − µ ≥ 0, and ‖µ‖ = t.

(a) The extremal problem

inf{I(µ)− 2I(µ, ν) : µ ∈Mσ
t } (A.3)

has a unique minimizer µ ∈Mσ
t .

(b) We have ν ∈Mσ
t if and only if µ = ν (which in the sequel is excluded).

(c) There exists F > 0 such that

Uµ−ν(x)
{

= F for x ∈ supp(σ − µ),
≤ F for x ∈ C \ supp(σ − µ). (A.4)

Also, supp(µ) = supp(σ).
(d) Conversely, if there exist a signed measure µ1 ≤ σ with µ1(supp(σ)) = t and

F1 ∈ R such that Uµ1−ν ≤ F1 quasi-everywhere on supp(σ) and Uµ1−ν ≥ F1

on supp(σ − µ1), then µ1 = µ and F1 = F .
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(e) With the Jordan decomposition ν − σ = ν0 − σ0 there holds supp(σ − µ) ⊂
supp(σ0). Moreover, the restriction of µ − ν onto R \ supp(ν0) is a positive
measure, with support containing supp(σ0) \ supp(ν0).

Proof. Set s := ‖σ‖ − t > 0, and consider the set M of positive Borel measures
ρ of mass s supported on E := supp(σ). We note that for each µ ∈ Mσ

t we have
σ − µ ∈ M, but in general the reciprocal is not true since we drop the constraint
µ ≥ 0. In a first step let us show that our extremal problem (A.3) is well-posed, and
that the constraint µ ≥ 0 is not important.

By assumption on ν, σ and the principle of descent (A.1), the external field

Q(x) = Uν−σ(x)

is continuous in the topology of R ∪ {+∞}. Since Uσ is continuous, we get from the
Fubini theorem ∫

Uν(x) dσ(x) =
∫

Uσ(y) dν(y) < ∞.

Hence both Uν and Q are finite in at least one point x0 ∈ supp(σ), and thus in a
neighborhood V of x0. Since σ(V ) > 0 by the definition of the support and I(σ|V ) <
∞, we may conclude that V ∩ supp(σ) has positive logarithmic capacity, and thus
Q is admissible in the sense of [38, Definition I.1.1] for the set E. Following [38,
Theorem I.1.3], we consider the problem of minimizing the weighted energy

inf
ρ∈M

IQ(ρ), where IQ(ρ) = I(ρ) + 2
∫

Q(x) dρ(x) ∈ (−∞,+∞]. (A.5)

Note that (A.5) is not the dual problem for (A.3) in the sense of [14, Corollary 2.10]
where one finds the additional constraint ρ ≤ σ. As shown in [38, Theorem I.1.3],
there exists a unique minimizer ρ ∈M and a constant F ∈ R such that

Uρ(x) + Q(x) = Uν−σ+ρ(x)
{
≥ −F for quasi every x ∈ E,
≤ −F for x ∈ supp(ρ). (A.6)

Here quasi-everywhere means everywhere up to an exceptional set E1 of logarithmic
capacity zero, which in our case may be dropped. This can be seen as follows: the
set Mn := {x ∈ C : Uν−σ+ρ(x) ≤ −F − 1/n} is closed since potentials are lower
semi-continuous and Uσ is continuous. From (A.6) we know that the Borel set E ∩
Mn has zero capacity. Since σ has finite energy, σ is C-absolutely continuous [38,
Definition II.4.5], implying that σ(E ∩ Mn) = σ(Mn) = 0. In other words, we find
that the inequality Uν−σ+ρ ≥ −F − 1/n holds σ-everywhere, and the principle of
domination [38, Theorem II.3.2] tells us that this inequality is true in the whole
complex plane. Taking the limit n →∞, we obtain the stronger equilibrium property

Uρ(x) + Q(x) = Uν−σ+ρ(x)
{
≥ −F for x ∈ C,
= −F for x ∈ supp(ρ). (A.7)

As a consequence, S0 = {x ∈ C : Uν(x) = +∞} has an empty intersection with
supp(ρ), and applying the de la Vallée-Poussin Theorem [38, Theorem IV.4.5] to the
set Ω = C \ S0 we conclude that the restriction of ρ + ν onto supp(ρ) is ≤ σ, and
ν ≥ 0 implies that ρ ≤ σ, or, in other words, σ − ρ ∈Mσ

t .
Note also that

IQ(σ − µ) = I(µ)− 2I(µ, ν) +
∫

Uσ(x) d(2ν − σ)(x),
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that is, the two weighted energy expressions in (A.3) for µ and (A.5) for ρ = σ − µ
only differ by a finite constant. It follows that the unique minimizer ρ of (A.5) is such
that σ − ρ = µ is the unique minimizer in (A.3), implying our claim (a).

If now µ1 is as in part (d), then ρ = σ − µ1 ∈ M satisfies (A.6) with F1 instead
of F . Together with [38, Theorem I.3.1] we may conclude that ρ is the minimizer in
(A.5), F = F1, and thus σ − ρ = µ1 is the minimizer in (A.3).

We pursue with a proof of part (b): obviously, µ = ν implies that ν ∈ Mσ
t .

Conversely, ν ∈Mσ
t together with the Lemma of Rakhmanov [32] implies that Uν is

continuous, and I(ν) < ∞. Then

I(µ)− 2I(µ, ν) = I(µ− ν)− I(ν).

Since elements inMσ
t have the same mass, we may apply [38, Lemma I.1.8] to conclude

that I(µ − ν) ≥ 0, with equality if and only if µ = ν. Hence the minimizer of (A.3)
must be µ = ν.

For a proof of (c) we exclude the trivial case µ = ν, and thus, again by [38,
Lemma I.1.8], Uν−µ is not the constant 0 on C. Recalling that E = supp(σ), we get
from (A.7) that the minimum of Uν−µ = Uν+ρ−σ on supp(µ) is ≥ −F , and Uν−µ

is a non-constant and superharmonic function in the domain C \ supp(µ) including
infinity, taking the value 0 at infinity. From the minimum principle for superharmonic
functions we may conclude that −F < 0. The same argument shows that for all
x ∈ E \ supp(µ) we must have Uν−µ(x) > −F , but E \ supp(µ) = supp(σ) \ supp(σ−
ρ) ⊂ supp(ρ) and thus Uν−µ(x) = −F by (A.7), which is a contradiction. Thus
supp(µ) = supp(σ), and (A.4) follows from (A.7).

For a proof of (e), note first that by construction ν − ν0 = σ − σ0 ≥ 0. We
have ‖ν0‖ 6= 0 since otherwise ν ∈ Mσ

t . Also, if ν0 = ν then the restriction of ν
onto R \ supp(ν0) is the zero measure, and assertion (e) becomes trivial. Therefore
it remains to consider the case t0 := t − ‖ν − ν0‖ = ‖ν0‖ ∈ (0, ‖σ0‖). Thus the
assumptions of Lemma A.1 are true for the triple (t0, ν0, σ0) instead of the triple
(t, ν, σ). Denoting by µ0 ∈ Mσ0

t0 the corresponding extremal measure, we find from
the equilibrium conditions (A.4) for µ0 and the triple (t0, ν0, σ0) that the measure
µ1 := µ0 + ν − ν0 = µ0 + σ − σ0 ∈ Mσ

t with supp(σ − µ1) = supp(σ0 − µ0) satisfies
also (A.4) for the triple (t, ν, σ) with the same constant F . Hence µ = µ1 by part (d).
Writing J := R \ supp(ν0) it follows that (µ − ν)|J = (µ0 − ν0)|J = µ0|J ≥ 0. The
last claim of part (e) is a consequence of part (c) since supp(µ0) = supp(σ0).

Since I(·) corresponds to the physical electrostatic energy in two dimensions, it
is possible to give an electrostatic interpretation of the construction of our extremal
measure µ: we have a condenser with an isolating plate with negative charge ν, and
a plate with positive charge µ, the second plate being conducting but subject to the
maximum charge-per-unit restriction µ ≤ σ. This situation of continuous charges is
the limit of an equilibrium between n − 1 negative unit charges (the poles) and n
positive unit charges (the Ritz values) on the real line, with the constraint that two
Ritz values are separated by an eigenvalue.

Remark A.2. In our examples studied in §4 we have chosen N − 1 poles
ξ1,N , . . . , ξN−1,N , and displayed the nth rational Ritz values for poles ξ1,N , . . . , ξn−1,N

for n = 1, . . . , N . In other words, here we have a family of pole measures

χN ({ξ1,N , . . . , ξn−1,N}) → νt for n, N →∞ such that n/N → t,

and νt of total mass ‖νt‖ = t is increasing in t ∈ (0, ‖σ‖). To each t we may associate
an extremal measure µt ∈ Mσ

t . We claim that µt is also increasing, and, more
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precisely, for 0 < t1 < t2 < ‖σ‖ there holds

supp(σ − µt2) ⊂ Σ∗t2 := {x ∈ C : Uµt2−νt2 (x) = Ft2} ⊂ supp(σ − µt1).

As a consequence, for almost all t we have supp(σ−µt) = Σ∗t , and this is true for all
t if t 7→ supp(σ − µt) is continuous.

We should mention that, for a fixed external field and no upper constraint, the
above claim is part of what is now known as the Buyarov-Rakhmanov formula [10],
which has been extended to the case of an upper constraint and no external field in
[6] (see also [7] for an additional fixed external field). The above claims have been
established by Coussement & Van Assche [11, Appendix A] in our setting for the
particular family νt = tδ0, but the arguments used by these authors remain fully valid
in our more general context, we omit details.

There is a subclass of constraints where µ can be computed explicitly.
Lemma A.3. Let E = supp(σ) = [α, β], and suppose that supp(ν) ⊂ (β, +∞),

and σ = Bal(σ̌, E), where supp(σ̌) ⊂ (−∞, α).
If the integral equation∫ √

α− y

b− y
dσ̌(y) =

∫ √
y − α

y − b
dν(y) (A.8)

does not have a solution b ∈ [α, β], then supp(σ − µ) = [α, β], and µ = Bal(ν, [α, β]),
the balayage of ν onto [α, β]. Furthermore, Uµ−ν is equal to the constant F on E.

Otherwise, the integral equation has exactly one solution b ∈ [α, β], with supp(σ−
µ) = [α, b], and µ = σ +Bal(ν− σ̌, [α, b]). Furthermore, Uµ−ν is equal to the constant
F on [α, b], and strictly less than F on (b, β].

Proof. We have already seen in the proof of Lemma A.1 that µ is the minimizer
of the constrained energy problem in Theorem 3.1 if and only if ρ = σ − µ is the
minimizing measure supported on E with mass s = ‖σ‖ − t for the unconstrained
energy problem (A.5) with external field Q(z) = Uν−σ(z). We define Q̌(z) = Uν−σ̌(z).
Since σ = Bal(σ̌, E) and Q, Q̌ are continuous on E there holds Q(z) = Q̌(z) + c for
all z ∈ E and some finite constant c (cf. [38, Theorem II.4.7]). Hence σ − µ remains
the minimizer of (A.5) if the external field is Q̌ instead of Q. Let us show that, for
suitable b, the solution of our extremal problem is obtained by balayage of the measure
σ̌ − ν onto the interval [α, b]. We write more explicitly ρ = Bal(σ̌ − ν, [α, b]) for our
candidate, and obtain from [38, Formula II.4.47] for its density ρ′(x) for x ∈ [α, b] the
formula

ρ′(x) =
f(x, b)

π
√

(x− α)(b− x)
, f(x, b) :=

∫
[α,b]c

√
(y − α)(y − b)
|y − x|

d(σ̌ − ν)(y).

By assumption on σ̌ and ν, the function x 7→ f(x, b) is strictly decreasing on [α, β]
for each b ∈ (α, β], and thus positive on [α, b] if and only if f(b, b) ≥ 0. By a similar
argument, b 7→ f(b, b) strictly decreases on [α, β], and f(α, α) = ‖σ̌‖ − ‖ν‖ = s > 0.
By comparing with (A.8), we see that this integral equation does not have a solution
in [α, β] if and only if f(β, β) > 0 and b = β, and otherwise there exists a unique
b ∈ [α, β] with f(b, b) = 0. Thus, in both cases, we find that ρ is a positive measure
supported on [α, b] with total mass ‖ρ‖ = s. According to Lemma A.1(d), it remains to
show that the equilibrium conditions (A.7) hold. From [38, Formula II.5.4 and II.5.7],

g(x) := Uρ(x) + Q(x)− Uρ(α)−Q(α) = −
∫

g(x, y) dσ̌(y) +
∫

g(x, y) dν(y),
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where x 7→ g(x, y) denotes the Green function of the domain C \ [α, b] with pole y.
Using the explicit expression given, e.g., in [38, §II.4], we may find the derivative of g
as

g′(x) =

{
0, x ∈ [α, b),
− f(x,b)√

(x−α)(x−b)
, x ∈ (b, β],

where we recall from above that −f(x, b) > 0 for b < x ≤ β. Hence g is indeed zero
on [α, b] and nonnegative on [α, β], as required for (A.7).

In our proofs we use Assumption (H3) in a slightly different form, namely the
one used in [24].

Lemma A.4. Suppose that (H1)–(H3) hold. For all ε > 0 there exist δ ∈ (0, 1/4)
such that for all integers N and for all λk,N ∈ ΛN

0 ≤ 1
N

∑
λj,N∈ΛN

0<|λj,N−λk,N |≤4δ

log
1

|λj,N − λk,N |
≤ ε. (A.9)

In addition, for each interval J of length ≤ 2δ and λ ∈ J we have 0 ≤ Uσ|J (λ) ≤ ε.
Finally, the function z 7→ Uσ(z) is continuous.

Proof. By assumption on δ, each term in the sum occurring in (A.9) is ≥ 0, and
so is the sum. If (A.9) is false, then there exists ε0 > 0 such that for all δ(m) = 1/m
there exists an integer N(m) and λk(m),N(m) ∈ ΛN(m) satisfying

1
N(m)

∑
λj,N(m)∈ΛN(m)

0<|λj,N(m)−λk(m),N(m)|≤4δ(m)

log
1

|λj,N(m) − λk(m),N(m)|
≥ ε0 > 0.

Note that lim supm N(m) = ∞, since otherwise, for sufficiently large m, the above sum
would be empty. Hence, by possibly extracting subsequences by taking into account
(H1), we may suppose that N(m) → ∞, and that λk(m),N(m) → λ for m →∞, and
we obtain a contradiction to Assumption (H3).

For a proof of the second statement, we note that the first inequality 0 ≤ Uσ|J (λ)
immediately follows from the fact that 2δ ≤ 1. By the maximum principle for loga-
rithmic potentials [38, Corollary II.3.3], we may suppose that λ ∈ supp(σ|J). Then
(H2) implies that there exist ΛN 3 λk(N),N → λ for N → ∞. By making J
slightly larger if necessary we may suppose that σ(∂J) = 0. It follows from (H2)
that σN = χN (J ∩ ΛN \ {λk(N),N}) → σ|J . Since eigenvalues λj(N),N ∈ J satisfy
|λj(N),N − λk(N),N | ≤ 2δ + |λ − λk(N),N |, we get from (A.9) for sufficiently large N

that UσN (λk(N),N ) ≤ ε, and (A.1) implies that Uσ|J (λ) ≤ ε.
Finally, by the Continuity Theorem [38, Theorem II.3.5], it is sufficient to show

the continuity of Uσ on supp(σ). Let x ∈ supp(σ), and ε, δ > 0 as above. Denote
J = [x − δ, x + δ], then Uσ|R\J is continuous in x, and for all y with |y − x| ≤ δ we
obtain from above that |Uσ|J (x)−Uσ|J (y)| ≤ 2ε, implying the continuity of Uσ in x.

Another very important ingredient in our reasoning is that we may discretize
measures supported on the real line in an appropriate manner, compare with [2,
Lemma 2.1(d)] or [6, Lemma A.1] for a similar discretization procedure in the complex
plane.

Lemma A.5. Let Z1,N ⊂ Z3,N ⊂ R be discrete sets with asymptotic behavior
χN (Z1,N ) → ρ1, χN (Z3,N ) → ρ3, and suppose that ρ3 has no mass points.
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Then for each measure ρ2 satisfying ρ1 � ρ2 � ρ3 and for integers i(N) with
i(N)/N → ‖ρ2‖ we find for sufficiently large N discrete sets Z2,N containing i(N)
elements such that

χN (Z2,N ) → ρ2, ∀N : Z1,N ⊂ Z2,N ⊂ Z3,N .

Proof. Denote by [a, b) an interval containing supp(ρ2), and consider the intervals
Ij,k = [a + (j − 1)/k, a + j/k) for j = 1, . . . , j(k), where j(k)− 1 is the integer part of
k(b− a) such that supp(ρ2) is contained in the partition I1,k ∪ · · · ∪ Ij(k),k. Since ρ3

and thus ρ1 and ρ2 have no mass points, we find that

lim
N→∞

#(Z1,N ∩ Ij,k)
N

= ρ1(Ij,k) ≤ ρ2(Ij,k) ≤ ρ3(Ij,k) = lim
N→∞

#(Z3,N ∩ Ij,k)
N

for all j = 1, . . . , j(k). Thus there exists N(k) ≥ 0 such that for all N ≥ N(k) we can
construct Z2,k,N contained in Z3,N and containing Z1,N with∣∣∣#(Z2,k,N ∩ Ij,k)

N
− ρ2(Ij,k)

∣∣∣ ≤ 1
k2

for all j = 1, . . . , j(k).

Clearly, we may choose these integers N(k) to be strictly increasing in k. Define now
Z2,N = Z2,k,N for N(k) ≤ N < N(k + 1). Then for N(k) ≤ N < N(k + 1) by
construction of our partition,

∣∣∣#Z2,N

N
− ‖ρ2‖

∣∣∣ ≤ j(k)∑
j=1

∣∣∣#(Z2,N ∩ Ij,k)
N

− ρ2(Ij,k)
∣∣∣≤ j(k)

k2
, (A.10)

the right-hand side tending to zero for k → ∞, or, what amounts to the same, for
N →∞. Similarly, any f ∈ C([a, b]) is bounded by some M > 0, and, with ω denoting
the modulus of continuity of f ,

∣∣∣∫ fdχN (Z2,N )−
∫

f dρ2

∣∣∣ ≤ j(k)∑
j=1

∣∣∣∫ f dχN (Z2,N ∩ Ij,k)−
∫

Ij,k

f dρ2

∣∣∣
≤ M

j(k)
k2

+ ω(1/k)
(
2 ‖ρ2‖+

j(k)
k2

)
,

the right-hand side tending to zero for k → ∞, implying that χN (Z2,N ) → ρ2 for
N → ∞. Also, estimate (A.10) implies that #Z2,N = N‖ρ2‖ + o(N)N→∞ = i(N) +
o(N)N→∞. By slightly changing our construction we can drop the o(N) term: if
#Z2,N < i(N) then there exists a j such that ρ3(Ij,k) > ρ2(Ij,k), and we can add
i(N)−#Z2,N new elements from Z3,N ∩Ij,k to Z2,N . Similarly, if #Z2,N > i(N) then
there exists a j such that ρ2(Ij,k) > ρ1(Ij,k), and we can drop #Z2,N − i(N) elements
from Z2,N ∩ Ij,k which are not in Z1,N . In both cases, the modification concerns only
o(N) points, and hence the conclusion χN (Z2,N ) → ρ2 remains valid.


