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Abstract. We investigate an acceleration technique for restarted Krylov subspace methods for
computing the action of a function of a large sparse matrix on a vector. Its effect is to ultimately
deflate a specific invariant subspace of the matrix which most impedes the convergence of the restarted
approximation process. An approximation to the subspace to be deflated is successively refined in
the course of the underlying restarted Arnoldi process by extracting Ritz vectors and using those
closest to the spectral region of interest as exact shifts. The approximation is constructed with the
help of a generalization of Krylov decompositions to linearly dependent vectors. A description of
the restarted process as a successive interpolation scheme at Ritz values is given in which the exact
shifts are replaced with improved approximations of eigenvalues in each restart cycle. Numerical
experiments demonstrate the efficacy of the approach.
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1. Introduction. Numerical methods for the evaluation of f(A)b, where A ∈
CN×N , 0 6= b ∈ CN and f is a complex-valued function such that f(A) is defined,
have become an active area of research in recent years. This development is driven
by certain applications but also by other numerical algorithms such as exponential
integrators for ordinary differential equations, where the action of f(A) on a vector b
has to be computed (see the survey of Frommer and Simoncini [16] or the monograph
of Higham [18, Chapter 13]). If A is large and sparse such that computing f(A)
is unfeasible but matrix-vector multiplications with A still practicable, then the so-
called Arnoldi approximation to f(A)b is a popular approach (see, e.g., Ericsson [14],
Knizhnerman [21] or Saad [34]). This is based on an Arnoldi decomposition‡ of A,

AVm = VmHm + hm+1,mvm+1e
T
m, (1.1)

where the columns of Vm = [v1 v2 · · · vm] ∈ CN×m form an orthonormal basis of
the Krylov subspace Km(A, b) = span{b, Ab, . . . , Am−1b}, b = ‖b‖v1, vm+1 ∈
Km+1(A, b) is orthogonal to Km(A, b), Hm = V Hm AVm ∈ Cm×m is an unreduced
upper Hessenberg matrix, and em ∈ Rm denotes the m-th unit coordinate vector.
The Arnoldi approximation of f(A)b from Km(A, b) is then defined by

fm := Vmf(V Hm AVm)V Hm b = ‖b‖Vmf(Hm)e1, (1.2)

assuming that also f(Hm) is defined, which in turn is implied e.g. if f is analytic on
the field of values of A. Note that the approximation (1.2) requires the evaluation of
f only for the m×m matrix Hm, where typically m� N .

As m becomes large (as it typically does in realistic problems), a disadvantage
of the Arnoldi approximation lies in the need to store Vm, which may limit the size
of the problems that can be solved due to memory constraints. In [11] we proposed

∗This work was supported by the Deutsche Forschungsgemeinschaft.
†Institut für Numerische Mathematik und Optimierung, Technische Universität Bergakademie

Freiberg, 09596 Freiberg, Germany, {eiermann, ernst}@math.tu-freiberg.de, stefan@guettel.com
‡When we use terminology such as Arnoldi decomposition, Arnoldi approximation, Arnoldi al-

gorithm, etc. in association with a Hermitian matrix A, we tacitly assume that computations are
carried out with the Hermitian Lanczos process.

1



2 M. Eiermann, O. G. Ernst and S. Güttel

a restarting technique which overcomes this deficiency. It is based on a sequence of
Arnoldi decompositions

AV (j) = V (j)H(j) + h(j)v (j)eTm, j = 1, 2, . . . , k,

associated with the Krylov subspaces Km(A, v (j−1)), each of fixed dimension m and
each using the last Arnoldi vector of the previous Krylov space as its initial vector,
where v (0) = b/‖b‖. The mk columns of the matrices {V (j)}kj=1 taken together
then form a basis of Kkm(A, b). In [11] and [3] it is explained how to compute an

approximation f̂k to f(A)b from Kkm(A, b) recursively using only V (k), i.e., such

that updating from f̂k−1 to f̂k requires only the storage of V (k). However, as is
the case with restarted Krylov subspace schemes for eigenvalue problems or linear
systems of equations, restarting is typically accompanied by slower convergence or
even divergence of the approximation.

In this paper we show that the convergence of the restarted Arnoldi approximation
can be accelerated significantly by replacing the initial vector v (j) of the (j + 1)st
Krylov space by a judiciously chosen vector ṽ (j) ∈ Km+1(A, v (j−1)) \Km(A, v (j−1)).
Our choice of the modified initial vectors has the effect of ultimately deflating certain
spectral components from the problem. If these components are associated with
eigenvalues of A close to a singularity of f , this deflation can be shown to accelerate
convergence. Which eigencomponents should be deflated in case f is an entire function
will be discussed below.

The deflated restarting technique for the evaluation of matrix functions is closely
related to similar approaches for eigenvalue problems and the iterative solution of
linear systems. The idea of restarting a Krylov subspace method dates back to the
first practical Lanczos- and Arnoldi-based procedures for computing a few eigenpairs
of large sparse matrices, see e.g. Saad [32, 33]. To mitigate the overwhelming storage
requirements of the full algorithms, restarting with a linear combination of Ritz vectors
or another suitable vector contained in the current Krylov space as the new initial
vector was proposed. For a Krylov space Km(A, b), such a vector has the form p(A)b
for some polynomial p ∈ Pm, sometimes called a filter polynomial since it is used
to damp out undesired parts of the spectrum Λ(A). A substantial innovation, the
implicitly restarted Arnoldi method of Sorensen [37] enables the construction of the
Arnoldi decomposition of the restarted space Km−k(A, pk(A)b) for a filter polynomial
pk ∈Pk, k ≤ m from the original Arnoldi decomposition of Km(A, b) given only the
roots of pk without further matrix-vector multiplications. Subsequently, a more stable
variant of this procedure based on a Schur decomposition rather than a sequence of QR
steps was proposed by Stewart [39]. Restarting with a Krylov space larger than the
space spanned by the desired Ritz vectors was introduced by Stathopoulos, Saad and
Wu in [38] as thick restarting and later specialized to the Hermitian Lanczos method
by Wu and Simon [41]. The idea of using nearly invariant subspaces generated by
a restarted Krylov method to accelerate the iterative solution process for a linear
system of equations was proposed as early as 1987 by Nicolaides [27] in the context
of conjugate gradient iteration, and later studied systematically for Arnoldi-based
methods by Morgan [24, 25, 26]. The same basic deflation effect can also be achieved
by constructing a preconditioner from the invariant subspace vectors, as proposed
in [4, 13]. An analysis of these approaches can be found in [12]. In the context of
approximating f(A)b, Niehoff [28, Section 3.4] first pointed out how such a deflation
technique could be incorporated in a restarted Krylov subspace method by applying
the method for the evaluation of the exponential function, but he did not provide
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further analysis.
The analysis presented here of the deflated restarting scheme is based on further

generalization of decompositions of Arnoldi type as well as the characterization of
Krylov subspace approximations for matrix functions as polynomial Hermite interpo-
lation on a nested sequence of nodes, which we have found instrumental in previous
work [11, 3, 2]. The former is required due to the manner in which information is
transferred between successive restart cycles, in that each cycle reuses a subspace of
its predecessor. As a result, this leads to linearly dependent vectors in the global
representation of the restarted cycles, which is needed when approximating general
matrix functions with restarted Krylov subspaces. The interpolation process of the
deflated restarted method differs from that in [11, 3, 2] in that, rather than adding a
fixed number of interpolation nodes with each restart cycle, we update certain nodes
with steadily improving approximations of eigenvalues close to a specified target value.
The interpolation view allows us to split the analysis of the convergence of the overall
process into two parts: we characterize the deflated restarted Krylov subspace method
as a sequence of polynomial interpolations at nodes constructed from Ritz values by
the algorithm. Combining this with known results on the convergence of Ritz values
associated with restarted Krylov subspaces [5], we may conclude that the updated
nodes converge to the target eigenvalues of A, resulting, asymptotically, in deflation.
In addition, our analysis sheds new light on the behavior of the full orthogonalization
method (FOM) with deflated restarting for solving linear systems of equations, to
which the deflated restarting method specializes if f(z) = 1/z. In contrast to our
study of the interpolation node sequence, the convergence of FOM is usually ana-
lyzed geometrically by measuring the angle between an iteration space and the target
eigenvector space (see, e.g., [24, Theorem 2] or [5, Theorem 3.3]).

The remainder of this paper is organized as follows. In Section 2 we introduce
Krylov-like decompositions, providing a generalization of the Arnoldi decomposition
for manipulating vectors in a Krylov space in terms of any (possibly linearly depen-
dent) set of vectors that span such a space. In particular, we show that the appli-
cation of polynomials of degree up to m in A applied to b may be evaluated using
only the quantities in a Krylov-like decomposition of Km(A, b), thus generalizing a
well-known property of Arnoldi and Arnoldi-type decompositions (cf. [9, 34, 29, 11])
which is key to the construction of Krylov subspace approximations of f(A)b. In
Section 3 we describe our new algorithm for incorporating deflation into the restarted
Krylov subspace approximation of f(A)b. Moreover, we characterize the associated
approximation as resulting from the interpolation of f at the sequence of Ritz values
accumulated in the course of the restart cycles in a manner analogous the undeflated
restarted method of [11]. We show that the effect of deflation on this interpolation
process is that those Ritz values approximating target eigenvalues of A selected for
deflation in a restart cycle are removed from the set of interpolation nodes in the
following cycle and replaced by improved approximations of these eigenvalues. Since
the basic mechanism at work in spectral deflation for matrix functions may not be
immediately apparent through the intricacies of the algorithm, we give a simple ide-
alized explanation of this process in Section 4. Section 5 presents several numerical
experiments which serve to illustrate the properties of the deflated restarting method
as well as its utility.

2. Krylov-like decompositions and approximations. We shall require
somewhat more general decompositions than (1.1) of the form

AWm+` = Wm+`Km+` + wkTm+`, (2.1)
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where Km+` ∈ C(m+`)×(m+`), Wm+` ∈ CN×(m+`) with range(Wm+`) = Km(A, b),
w ∈ Km+1(A, b) \Km(A, b) and km+` ∈ Cm+`. Note that the columns of Wm+` are
linearly dependent if (and only if) ` > 0.

We shall refer to (2.1) as a Krylov-like decomposition of A with respect to
Km(A, b). Under additional assumptions this simplifies to various special cases of
decompositions related to Krylov spaces which have appeared in the literature: in
particular, (2.1) becomes

• a Krylov decomposition if ` = 0, in which case the columns of Wm are linearly
independent and form a basis of Km(A, b) (cf. Stewart [39]),

• an Arnoldi-like decomposition if ` = 0 and the columns of Wm form an ascend-
ing basis∗ of Km(A, b), in which case Km is an unreduced upper Hessenberg
matrix (cf. [11]),

• an Arnoldi decomposition if ` = 0, the columns of Wm form an ascending
basis of Km(A, b) and are orthonormal, in which case Km is also unreduced
upper Hessenberg and which constitutes the most familiar situation (see, e.g.,
[9], [34]).

Let f be a function such that f(Km+`) is defined. We then define the Krylov-like
approximation to f(A)b associated with (2.1) as

fm+` := Wm+`f(Km+`)b̂, (2.2)

where b̂ ∈ Cm+` is any vector such that Wm+`b̂ = b. Note that b̂ is in general
not uniquely defined. However, we shall see later that the approximation fm+` is
independent of the particular choice of b̂ (see Remark 2.6).

To motivate the considerations that follow, we quote a well-known result about
the Arnoldi approximations mentioned in the introduction.

Theorem 2.1 (cf., e.g., [34, 19]). The Arnoldi approximations fm in (1.2) can
be expressed as

fm = ‖b‖Vmf(Hm)e1 = qm−1(A)b =
1

2πi

∫
Γ

f(λ)xm(λ) dλ.

Here, qm−1 denotes the uniquely determined polynomial of degree m− 1 which inter-
polates f in the Hermite sense at the eigenvalues of Hm. For the contour integral we
require that f be analytic in and on the Jordan curve Γ which contains the eigenvalues
of A and Hm in its interior. The vectors xm(λ) := ‖b‖Vm(λIm − Hm)−1e1 are the
approximate solutions of the linear systems (λIN −A)x (λ) = b that are generated by
m steps of the full orthogonalization method (FOM) with starting vectors x0(λ) = 0.

We now show that analogous characterizations hold for the Krylov-like approxi-
mation fm+` of (2.2). To this end, we require several lemmas.

Lemma 2.2. For any polynomial q(z) = αmz
m + · · · ∈Pm there holds

q(A)b = Wm+` q(Km+`) b̂ + αm(kTm+`K
m−1
m+` b̂)w (2.3)

using the notation of (2.1). In particular, for q ∈Pm−1 this simplifies to

q(A)b = Wm+` q(Km+`) b̂.

∗i.e., the first j columns span Kj(A, b) for all j = 1, 2, . . . ,m
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Proof: By linearity it is sufficient to verify (2.3) for the monomials q(z) = zj , j =
0, . . . ,m, which follows immediately by induction: For j = 0 we have A0b =
Wm+`K

0
m+`b̂ = b, since b̂ satisfies Wm+`b̂ = b by assumption. Moreover, the

assumption Aj−1b = Wm+`K
j−1
m+`b̂ for some j ∈ {1, 2, . . . ,m} yields, after multi-

plication by A,

Ajb = A(Aj−1b) = A(Wm+`K
j−1
m+`b̂) = Wm+`K

j
m+`b̂ + (kTm+`K

j−1
m+`b̂)w ,

where we have used (2.1) for the last equality. The leftmost vector in this chain
of identities is contained in Kj+1(A, b) \Kj(A, b) and this is only possible for the

rightmost vector if kTm+`K
j−1
m+`b̂ = 0 for 1 ≤ j ≤ m − 1 since w ∈ Km+1(A, b) \

Km(A, b). For j = m we obtain the identity (2.3). �
The vector w in (2.1) lies in Km+1(A, b) \ Km(A, b) and can therefore be ex-

pressed as w = pm(A)b with a unique polynomial pm of exact degree m. This
polynomial plays a crucial role in the analysis which follows.

Lemma 2.3. For the polynomial pm defined by w = pm(A)b, there holds

Wm+` pm(Km+`)b̂ = 0.

More generally, for any polynomial q there holds

Wm+` q(Km+`) pm(Km+`)b̂ = 0.

Proof: Writing pm(z) = αmz
m+ · · · and substituting w = pm(A)b, Lemma 2.2 yields

pm(A)b = Wm+` pm(Km+`)b̂ + αm(kTm+`K
m−1
m+` b̂) pm(A)b,

or, equivalently,(
1− αm(kTm+`K

m−1
m+` b̂)

)
pm(A)b = Wm+` pm(Km+`)b̂. (2.4)

The vector w = pm(A)b is an element of Km+1(A, b) \Km(A, b) and the right-hand
side of (2.4) is an element of range(Wm+`) = Km(A, b). Equality in (2.4) can only

hold if both sides vanish, i.e., if Wm+` pm(Km+`)b̂ = 0.

Assume next that Wm+`K
j−1
m+`pm(Km+`)b̂ = 0 for some j ≥ 1. Then, using (2.1),

Wm+`K
j
m+`pm(Km+`)b̂ = (Wm+`Km+`)K

j−1
m+`pm(Km+`)b̂

= (AWm+` −wkTm+`)K
j−1
m+`pm(Km+`)b̂

= AWm+`K
j−1
m+`pm(Km+`)b̂ − (kTm+`K

j−1
m+`pm(Km+`)b̂)w

= −(kTm+`K
j−1
m+`pm(Km+`)b̂)w

by our assumption. We now argue as in the proof of Lemma 2.2: Since w ∈
Km+1(A, b) \ Km(A, b) and Wm+`K

j
m+`pm(Km+`)b̂ ∈ Km(A, b) the above equa-

tion implies Wm+`K
j
m+`pm(Km+`)b̂ = 0.

We have thus inductively shown that Wm+`K
j
m+`pm(Km+`)b̂ = 0 for all j from

which the assertion of the lemma follows. �
As an additional tool we state an essentially well-known property of the zeros of

pm.
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Lemma 2.4. The zeros of pm are contained in the spectrum of Km+`. More
precisely, pm divides the characteristic polynomial of Km+`.
Proof: The j-th column of the matrix Wm+` can be expressed as p(j)(A)b for some
polynomial p(j) of degree at mostm−1. From (2.1) we conclude that these polynomials
satisfy the recurrence

z
[
p(1)(z), . . . , p(m+`)(z)

]
=
[
p(1)(z), . . . , p(m+`)(z)

]
Km+` + pm(z)kTm+`, (2.5)

If z0 is a zero of pm, then pm(z0)kTm+` vanishes and z0 must be an eigenvalue of Km+`.
Next, let z0 be a double zero of pm. Differentiating (2.5) gives

z

[
dp(1)(z)

dz
, . . . ,

dp(m+`)(z)

dz

]
+
[
p(1)(z), . . . , p(m+`)(z)

]
=

[
dp(1)(z)

dz
, . . . ,

dp(m+`)(z)

dz

]
Km+` +

dpm(z)

dz
kTm+`.

Since dpm(z0)/dz = 0, we see that the eigenvalue z0 is associated with the eigenvector[
p(1)(z0), . . . , p(m+`)(z0)

]
and the principal vector

[
dp(1)(z0)/dz, . . . ,dp(m+`)(z0)/dz

]
.

Consequently, the eigenvalue z0 of Km+` has at least algebraic multiplicity 2. For
zeros of higher order the result follows from further differentiation. �

We are now in position to prove the main theorem of this section.
Theorem 2.5. The Krylov-like approximation to f(A)b introduced in (2.2) as

fm+` = Wm+`f(Km+`)b̂ can be characterized as

fm+` = qm−1(A)b,

where qm−1 interpolates f in the Hermite sense at the zeros of pm (see Lemma 2.3),
i.e., at some but, in general, not at all eigenvalues of Km+`.
If Γ is a Jordan curve which contains the eigenvalues of A and Km+` in its interior
and such that f is analytic in and on Γ then

fm+` =
1

2πi

∫
Γ

f(λ)xm+`(λ) dλ,

where xm+`(λ) = Wm+`(λIm+` − Km+`)
−1b̂ is the Krylov-like approximation to

(λIN −A)−1b associated with (2.1).
Proof: To show the first of the above characterizations we note that, by the

definition of matrix functions, f(Km+`) = r(Km+`) with r ∈ Pm+`−1 the Hermite
interpolating polynomial of f at the eigenvalues of Km+`. In particular, the Krylov-
like approximation can be expressed as fm+` = Wm+` r(Km+`)b̂, and it suffices to
show that

Wm+` r(Km+`)b̂ = qm−1(A)b.

Since, by Lemma 2.4, the zeros of pm are among the eigenvalues of Km+`, the poly-
nomial qm−1 also interpolates r at the zeros of pm, and therefore r − qm−1 must be
divisible by pm, i.e., r = spm + qm−1 for some polynomial s. Thus,

Wm+` r(Km+`)b̂ = Wm+` s(Km+`)pm(Km+`)b̂ +Wm+`qm−1(Km+`)b̂ = qm−1(A)b

since, by Lemma 2.3, Wm+`s(Km+`)pm(Km+`)b̂ = 0, and, by Lemma 2.2,

Wm+`qm−1(Km+`)b̂ = qm−1(A)b.



Deflated Restarting for Matrix Functions 7

The second characterization is an immediate consequence of the representation
of a matrix function as a Cauchy integral. Under the given assumptions, there holds

f(Km+`) =
1

2πi

∫
Γ

f(λ)(λIm+` −Km+`)
−1 dλ.

�
Remark 2.6. As a consequence of Theorem 2.5, the approximation fm+` =

Wm+`f(Km+`)b̂ is determined by the zeros of pm but is independent of the specific

choice of b̂, as long as Wm+`b̂ = b.

3. The Restarted Krylov Approximation with Deflation. We briefly de-
scribe the Arnoldi method with deflated restarting which underlies our approach. We
will allow m matrix-vector multiplications by A per cycle and augment the current
Krylov space by ` approximate eigenvectors. More precisely, we identify a priori a
subspace of dimension ` which delays convergence of the restarted Krylov subspace
approximation to f(A)b. As an example, if f has a finite singularity such as at the
origin when solving linear systems of equations, one would choose the A-invariant
subspace associated with the ` eigenvalues closest to this singularity. The approxi-
mation of this subspace is successively refined in the course of our algorithm with the
goal of removing its influence on the convergence process. We refer to the eigenvalues
associated with this subspace as target eigenvalues.

We note that m and ` need not necessarily be the same for all cycles. However
we assume this here to keep the notation as simple as possible.

In the first cycle, we compute the standard Arnoldi decomposition of A with
respect to Km(A, b) given by AV (1) = V (1)H(1) + h(1)v (1)eTm. We then extract `
eigenpairs of H(1). More precisely, we compute a partial Schur decomposition

H(1)U (1) = U (1)T (1),

where T (1) ∈ C`×` is upper triangular and where the columns of U (1) ∈ Cm×` form
an orthonormal basis of the invariant subspace associated with ` desired eigenvalues
of H(1). With Y (1) := V (1)U (1) ∈ CN×`, there holds

AY (1) = Y (1)T (1) + h(1)v (1)u (1)

with the (generally dense) row vector u (1) := eTmU
(1) ∈ C1×`. We extend this factor-

ization by m standard Arnoldi steps to obtain

A [Y (1) V (2)] = [Y (1) V (2)]

[
T (1) S(1)

h(1)e1u
(1) H(2)

]
+ h(2)v (2)eT`+m. (3.1)

Here [Y (1) V (2) v (2)] ∈ Cn×(`+m+1) has orthonormal columns, V (2)e1 = v (1), H(2) ∈
Cm×m is an unreduced upper Hessenberg matrix, and S(1) = [Y (1)]HAV (2) ∈ C`×m
is in general a dense matrix. This concludes the second cycle. For later use, we
abbreviate (3.1) by

A [Y (1) V (2)] = [Y (1) V (2)]G(2) + h(2)v (2)eT`+m (3.1’)

(note that G(2) is not Hessenberg).
Before describing the k-th cycle (k ≥ 2) let us summarize the situation after k−1

cycles:

AV (1) = V (1)G(1) + h(1)v (1)eTm,

A [Y (j−1) V (j)] = [Y (j−1) V (j)]G(j) + h(j)v (j)eT`+m, j = 2, 3, . . . , k − 1.
(3.2)
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All matrices [Y (j−1) V (j) v (j)] have orthonormal columns. There holds V (1)e1 =
b/‖b‖ and [Y (j−1) V (j)]e`+1 = V (j)e1 = v (j−1) (j = 2, 3, . . . , k − 1). Further,

G(1) = H(1) ∈ Cm×m,

G(j) =

[
T (j−1) S(j−1)

h(j−1)e1u
(j−1) H(j)

]
∈ C(`+m)×(`+m), j = 2, 3, . . . , k − 1,

(3.3)

with H(j) ∈ Cm×m unreduced upper Hessenberg (j = 1, 2, . . . , k − 1) and T (j−1) ∈
C`×` upper triangular matrices (j = 2, 3, . . . , k − 1). The matrix T (j−1) represents
the action of G(j−1) on the G(j−1)-invariant subspace spanned by the (orthonormal)
columns of U (j−1). Finally, Y (j−1) = [Y (j−2) V (j−1)]U (j−1) ∈ CN×` and S(j−1) =
[Y (j−1)]HAV (j).

In the k-th cycle we proceed analogously. We first determine a partial Schur
decomposition of G(k−1) associated with ` target eigenvalues,

G(k−1)U (k−1) = U (k−1)T (k−1) (3.4)

(T (k−1) ∈ C`×` is upper triangular, the columns of U (k−1) ∈ C(`+m)×` are orthonor-
mal) and obtain, with Y (k−1) := [Y (k−2) V (k−1)]U (k−1) ∈ CN×` and u (k−1) :=
eT`+mU

(k−1) ∈ C1×(`+m),

AY (k−1) = Y (k−1)T (k−1) + h(k−1)v (k−1)u (k−1). (3.5)

As above, m subsequent Arnoldi steps lead to

A [Y (k−1) V (k)] = [Y (k−1) V (k)]

[
T (k−1) S(k−1)

h(k−1)e1u
(k−1) H(k)

]
+ h(k)v (k)eT`+m.

Next we glue these decompositions together (for j = 1, 2, . . . , k) to obtain

AW (k) = W (k)K(k) + h(k)v (k)eTkm+(k−1)`, (3.6)

where W (k) = [V (1) Y (1) V (2) · · · Y (k−1) V (k)] ∈ CN×(km+(k−1)`),

K(k) :=


G(1)

F (1) G(2)

. . .
. . .

F (k−1) G(k)

 ∈ C(km+(k−1)`)×(km+(k−1)`),

where F (j) :=

{
h(1)e`+1e

T
m ∈ R(`+m)×m, j = 1,

h(j)e`+1e
T
`+m ∈ R(`+m)×(`+m), j = 2, 3, . . . , k − 1.

Equation (3.6) represents a Krylov-like decomposition of A with respect to Kkm(A, b)
as introduced in Section 2 (see (2.1)).

Associated with (3.6) is the Krylov-like approximation

f (k) := ‖b‖W (k)f(K(k))e1 (3.7)

(cf. (2.2) noting that ‖b‖W (k)e1 = b).
We briefly point out the simplifications which result when A is Hermitian. In

this case the Arnoldi process simplifies to the Hermitian Lanczos process, and the
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Hessenberg matrices H(j) in (3.3) are all unreduced real symmetric tridiagonal.
Moreover, as can be seen from multiplying (3.2) from the left with [Y (j−1)V (j)]H ,
the matrices G(j) are also Hermitian. In particular, T (j−1) is real diagonal and
S(j−1) = [h(j−1)e1u

(j−1)]H .
By Theorem 2.5 the approximation f (k) in (3.7) can be represented as qkm−1(A)b,

where the polynomial qkm−1 Hermite-interpolates f at km of the km + (k − 1)`
eigenvalues of K(k). We next characterize these interpolation nodes, and for this we
require the following result.

Lemma 3.1 ([24]). Let θ
(j)
1 , . . . , θ

(j)
` denote the target eigenvalues of G(j) in

cycle j (i.e., the eigenvalues of T (j), counting multiplicities). Let further v (j) ∈
Kjm+1(A, b) have the form pjm(A)b. Then

rjm−`(z) =
pjm(z)(

z − θ(j)
1

)
· · ·
(
z − θ(j)

`

)
is a polynomial of degree jm− ` and there holds

range
([
Y (j) V (j+1)

])
= Km(A, rjm−`(A)b).

We arrive at the following theorem.
Theorem 3.2. The approximation to f(A)b introduced in (3.7) as f (k) :=

‖b‖W (k)f(K(k))e1 can be characterized as

f (k) = qkm−1(A)b,

where qkm−1 interpolates f in the Hermite sense at the zeros of pkm. Using the
notation of (3.2) and Lemma 3.1 these zeros are given by

k−1⋃
j=1

(
Λ(G(j)) \

{
θ

(j)
1 , . . . , θ

(j)
`

})
∪Λ(G(k)).

If Γ is a Jordan curve which contains the eigenvalues of A and K(k) in its interior
such that f is analytic in and on Γ then

f (k) =
1

2πi

∫
Γ

f(λ)x (k)(λ) dλ,

where x (k)(λ) = ‖b‖W (k)
(
λI − K(k)

)−1
e1 is the approximation to the solution of

(λIN − A)x (λ) = b after k cycles of the restarted FOM method [24, 25, 26] with
restart length m and ` deflated eigenvalues, beginning with x0(λ) = 0.

Remark 3.3. The standard Arnoldi approximation fm based on the Arnoldi de-
composition AVm = VmHm + hm+1,mvm+1e

T
m can be expressed as qm−1(A)b, where

qm−1 Hermite-interpolates f at all eigenvalues of the compression Hm. Similar state-
ments apply to approximations based on Arnoldi-like and Krylov decompositions (such
as the restarted Arnoldi approximation as described in [11]). However, in the case of
Krylov-like decompositions, in which the Krylov subspace is represented by possibly lin-
early dependent vectors, not all eigenvalues of the matrix describing the action of A
on the Krylov space in terms of these generating vectors can be active as interpolation
nodes.
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For the thick-restarted Arnoldi approximation f (k), only the non-target eigenval-
ues of {G(j)}k−1

j=1 serve as interpolation points, yielding (k − 1)m − ` nodes. The

remaining m+ ` nodes coincide with the eigenvalues of G(k).
Proof of Theorem 3.2: From Theorem 2.5 we know that f (k) = qkm−1(A)b, where

qkm−1 Hermite-interpolates f at the zeros of pkm, which is given by v (k) = pkm(A)b.
For cycle j = 1 we have an Arnoldi decomposition

AV (1) = V (1)G(1) + h(1)v (1)eTm,

and, by Lemma 2.3, v (1) = p(1)(A)b where p(1) = pm is a multiple of the characteristic
polynomial of G(1).

In cycle j + 1 we have a Krylov-like decomposition

A[Y (j) V (j+1)] = [Y (j) V (j+1)]G(j+1) + h(j+1)v (j+1)eT`+m,

where V (j+1)e1 = pjm(A)b. By Lemma 3.1 we know that range
([
Y (j) V (j+1)

])
=

Km(A, rjm−`(A)b), where

rjm−`(z) =
pjm(z)(

z − θ(j)
1

)
· · ·
(
z − θ(j)

`

) ,
and therefore v (j+1) = p(j+1)(A)(rjm−`(A)b) = (p(j+1)rjm−`)(A)b = p(j+1)m(A)b.

Since p(j+1) is a multiple of the characteristic polynomial of G(j+1), the zeros of
p(j+1)m are the union of the eigenvalues of G(j+1) and the zeros of rjm−`. This proves
the first assertion by an obvious induction. �

Remark 3.4. In finite-precision arithmetic the orthogonality of the approximate
eigenvectors Y (k−1) in (3.5) is lost, but can be maintained if the block Y (k−1) is
reorthogonalized before the Arnoldi decomposition is expanded by the vectors V (k). In
our implementation we proceed as follows: Assume that, in the k-th cycle we have
computed the partial Arnoldi decomposition

AỸ (k−1) = Ỹ (k−1)T (k−1) + h(k−1)v (k−1)u (k−1),

where the columns of Ỹ (k−1) have lost orthogonality due to rounding errors but are
still linearly independent (see (3.5)). We compute a QL-decomposition

[Ỹ (k−1)v (k−1)] = QL =: [Y (k−1)v (k−1)]

[
L̂ 0
∗ 1

]
,

where Q ∈ CN×(`+1) has orthonormal columns, which in particular implies that Y (k−1)

has orthormal columns, and where L̂ ∈ C`×` is an invertible lower triangular matrix.
An easy computation shows that

AY (k−1) = [Y (k−1)v (k−1)]

[
L̂ 0
∗ 1

] [
T (k−1)

h(k−1)u (k−1)

]
L̂−1

=: Y (k−1)T (k−1)
new + h(k−1)v (k−1)u (k−1)

new .

As described above this new (orthonormal) decomposition is expanded by m subsequent
Arnoldi steps.

Remark 3.5. If A and b are real, complex arithmetic can be avoided by using
real Schur decompositions in (3.4).
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Finally, we describe two ways the approximants f (k) of (3.7) to f(A)b can be
computed from the decomposition (3.6). They correspond to Algorithms 1 and 2 in
[3] (for details, see the description provided there).

Taking into account the block triangular structure of K(k) there holds

f (k) = f (k−1) + ‖b‖
[
Y (k−1) V (k)

] [
f(K(k))e1

]
(k−1)m+(k−2)`+1:km+(k−1)`

(k = 2, 3, . . .) with f (1) = ‖b‖V (1)f(K(1))e1. Although this method (we again refer
to it as Algorithm 1) has the advantage that only Y (k−1) and V (k) need to be stored
to update f (k−1), it requires the evaluation of f(K(k)), i.e., the evaluation of f of a
matrix whose dimension grows with the number of restarts.

Algorithm 2 avoids this drawback but it requires the knowledge of a rational
approximation r to f given as a partial fraction expansion

f(z) ≈ r(z) = α0z +

n∑
ν=1

αν
ων − z

.

Then the coefficients h (k) of the update in f (k) = f (k−1) + ‖b‖
[
Y (k−1) V (k)

]
h (k) can

be determined by solving linear systems of fixed dimension `+m. With f (0) = α0b,
we can represent h (k) as h (k) =

∑n
ν=1 ανh

(k,ν), where

(ωνIm −G(1))h (1,ν) = e1

(ωνI`+m −G(j))h (j,ν) = −F (j−1)h (j−1,ν) for j = 2, 3, . . . , k

(for ν = 1, 2, . . . , n).
To conclude this section, we summarize the algorithm by presenting a pseudocode,

where the first of the update procedures is used. A Matlab code can be found online
at www.matrixfunctions.com.

Algorithm 1: Arnoldi approximation for f(A)b with deflated restarting.

Given: A, b, f , m, `
Compute Arnoldi decomposition AV (1) = V (1)H(1) + h(1)v (1)eTm

with respect to Km(A, b).
Set F (1) := h(1)e`+1e

T
m ∈ R(`+m)×m.

Set f (1) := ‖b‖V (1)f(H(1))e1.
for k = 2, 3, . . . until convergence do

Compute partial Schur decomposition H(k−1)U (k−1) = U (k−1)T (k−1).
Set Y (k−1) := V (k−1)U (k−1) and reorthogonalize (cf. Remark 3.4).
Compute A[Y (k−1) V (k)] = [Y (k−1) V (k)]G(k) + h(k)v (k)eT`+m

by m further Arnoldi steps.

Set K(k) :=

[
K(k−1) O

O · · ·O F (k−1) G(k)

]
.

Set F (k) := h(k)e`+1e
T
`+m ∈ R(`+m)×(`+m).

Set f (k) := f (k−1) + ‖b‖ [Y (k−1) V (k)] [f(K(k)](k−1)m+(k−2)`+1:km+(k−1)`.

4. Spectral Deflation for Matrix Functions. To motivate our deflation tech-
nique we first consider an idealized situation. Suppose we are given an A-invariant
subspace with respect to which A assumes the block triangular form

A =

[
A1 B
O A2

]
.
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A partial solution to the evaluation of f(A) is given by a polynomial p which Hermite-
interpolates f at the eigenvalues of A1, resulting in f(A1) = p(A1). The error of this
approximation with respect to the original problem is then

f(A)− p(A) =

[
f(A1) X
O f(A2)

]
−
[
p(A1) Y
O p(A2)

]
=

[
O Z
O f(A2)− p(A2)

]
with a coupling matrix Z determined by the solution of the Lyapunov equation

A1Z − ZA1 = −B[f(A2)− p(A2)]. (4.1)

We further assume that the spectra of A1 and A2 are disjoint, in which case (4.1)
has a unique solution Z which depends continuously on the right hand side, whereby
convergence of p(A2) to f(A2) implies Z → O. Therefore, given the eigenvalues of
A1, the original problem is reduced to the task of approximating f(A2).

Our algorithm constructs successively improved approximations of the invariant
subspace associated with the target eigenvalues by steering the restarted Krylov sub-
spaces in this direction. Despite the well-known fact that a Krylov space cannot
contain an A-invariant subspace without being itself A-invariant (cf. e.g. [12]), we
observe that an approximate deflation is obtained for approximately invariant sub-
spaces.

Next, consider the situation at the beginning of the k-th restart cycle of the
deflated restarting method. The update obtained in this cycle results from an inter-
polation at additional nodes, namely the eigenvalues of G(k). Assuming rangeY (k−1)

has converged sufficiently close to the target space (see [5] for sufficient conditions
for this to occur) implies that h(k−1) in (3.5) has become small and hence G(k) is
nearly block upper triangular. The eigenvalues of G(k) thus consist of those of T (k−1)

and those of H(k). This means that the interpolation nodes added in this cycle are

{θ(k−1)
i }`i=1—these replace the target Ritz values of the preceding cycle (cf. Theo-

rem 3.2)—in addition to the eigenvalues of H(k).
As a consequence of the orthogonalization in the Arnoldi process, the eigenvalues

of H(k) can be characterized as Ritz values of a projected version of A as follows: The
second block of the lower identity in (3.2) reads as

AV (k) = Y (k−1)S(k−1) + V (k)H(k) + h(k)v (k)eTm.

Using S(k−1) = [Y (k−1)]HAV (k) and the fact that rangeY (k−1) ⊥ rangeV (k), this can
be rearranged to

(I − Y (k−1)[Y (k−1)]H)A(I − Y (k−1)[Y (k−1)]H)V (k) = V (k)H(k) + h(k)v (k)eTm,

which is a standard Arnoldi decomposition of the Krylov space of the orthogonal
section A(k−1) of A onto the orthogonal complement of rangeY (k−1) and initial vector
V (k)e1 = v (k−1). Consequently, the eigenvalues of H(k) are the Ritz values of A(k−1)

with respect to Km(A(k−1), v (k−1)). Once the target space has converged, the deflated
restart algorithm behaves as the undeflated algorithm applied to A projected onto
the complement of the target space. Results on the convergence properties of the
restarted Arnoldi method without deflation as given in [11, 2] may thus be applied
without modification to the deflated problem.

As an example, [2] treats the case of Hermitian A and restart length m = 1.
There it was shown that, asymptotically, the Ritz values, i.e., the interpolation nodes,
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alternate between two values ρ∗1 and ρ∗2 contained in the spectral interval [λ1, λN ] of
A located symmetric to its midpoint (λ1 + λN )/2. The asymptotic convergence rate
is determined by the lemniscates with foci ρ∗1 and ρ∗2 (see [2, Theorem 5.3]). Applying
deflation with ` = 1 and selecting, e.g., λ1 as the target eigenvalue yields 2×2 matrices
G(j) with eigenvalues θ(j) ≤ ρ(j), j ≥ 2. The approximation in the k-th cycle has the
form f (k) = qk−1(A)b, where qk−1 interpolates f at the nodes {ρ(2), . . . , ρ(k), θ(k)},
where

θk → λ1, ρ(2k) → ρ∗1, ρ(2k+1) → ρ∗2 as k →∞

but now ρ∗1 and ρ∗2 are contained in [λ2, λN ] and lie symmetric to (λ2 +λN )/2, where
λ2 denotes the second-smallest eigenvalue of A.

5. Numerical Examples. In this section we illustrate the behavior and the
performance of our restarted Arnoldi method with and without deflation, and compare
it with the unrestarted Arnoldi method. A comprehensive comparison of the deflated
restarting method with other polynomial Krylov methods (see, e.g., [9, 40, 20, 8]) is
beyond the scope of this paper and will be the subject of future work. Methods based
on rational Krylov spaces (cf. [30, 31, 10, 23, 15, 6, 17]) may also be an attractive
alternative to polynomial methods, provided that shifted linear systems (A−σI)x = v
can be solved efficiently. However, in practical applications this is often not the case,
examples being lattice QCD calculations [7]. Moreover, the linear operator A is often
not accessible in explicit matrix form, but only the form of a subroutine that only
returns the product Av given v . We emphasize that solving the shifted systems
with an inner unpreconditioned polynomial Krylov subspace iteration is not a viable
approach, as the overall method is then again a polynomial Krylov subspace method.

The following computations were carried out in Matlab 2009a on an Intel
Xeon 5160 at 3 GHz with 16 GB RAM. The operating system was SuSE Linux En-
terprise Server (SLES) Version 10.

5.1. A Simple Example. We first illustrate several aspects of the deflated
restarting Arnoldi approximation by computing f(A)b = A1/2b with

A = diag(1, 2, . . . , 100) ∈ R100×100, b = [1, 1, . . . , 1]T /
√

100 ∈ R100.

Figure 5.1 shows the errors of the unrestarted Arnoldi method and of the restarted
Arnoldi method with restart lengthm = 10. As to be expected, restarting significantly
slows down the speed of convergence. But we also see that this can be compensated
(at least partially) by deflated restarting (again m = 10) with ` = 1, 3 or 5 eigenval-
ues. On the left, the target eigenvalues were chosen as the ` eigenvalues of A which
are closest to the singularity of f , i.e., in this case the ` smallest eigenvalues. The
intimate connection between the Arnoldi approximation and polynomial interpolation
motivates this choice. On the right, we also see that targeting the largest eigenvalues
results in no improvement of the speed of convergence. Note that we have added
in both figures also dotted lines depicting the convergence behavior of the restarted
Arnoldi method (m = 10) without deflation applied to the reduced problems where
the target eigenvalues have been removed, i.e., applied to A = diag(`+1, `+2, . . . , 100)
on the left and to A = diag(1, 2, . . . , 100− `) on the right. These dotted lines are par-
allel to the corresponding solid ones, indicating that the asymptotic convergence rate
of the undeflated restarting method applied to the deflated problem is equal to the
asymptotic convergence rate of the deflated restarting method applied to the original
problem.
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Fig. 5.1. Approximating A1/2b: Convergence history of the Arnoldi method with restart length
m = 10 and ` = 0, 1, 3 and 5 target eigenvalues. The target eigenvalues are the smallest eigenvalues
(left) and the largest eigenvalues (right) of A, respectively. For comparison, the dotted lines (covered
by solid lines on the right) show the convergence of the restarted Arnoldi method without deflation
applied to the reduced problems with the ` = 1, 3 or 5 target eigenvalues removed from A.

The appropriate choice of the target eigenvalues is not so obvious if f has more
than one singularity: As an example we consider f1(z) =

√
z − 0.95/(101−z), restart

length m = 10 and choose the `− smallest (closest to the algebraic branch point
z = 0.95) eigenvalues and the `+ largest (closest to the pole z = 101) eigenvalues
of A = diag(1, 2, . . . , 100) as targets, where `− + `+ = ` = 5. Figure 5.2 shows the
resulting error curves on the left, whereas the error curves on the right correspond
to f2(z) =

√
101− z/(z − 0.95), which results from exchanging the singularity types

in f1. The asymptotic convergence behavior, i.e., the linear convergence factor, of a
restarted Arnoldi method depends only on the location of the singularities of f but
not on their type. At first glance, the pronounced difference between both sides of
Figure 5.2 seems to contradict this statement. However, the convergence curve for
restarts without deflation (` = 0) for f1 changes its slope after eight restart and shows,
from then on, the same slope as the corresponding curve for f2. Similar observations
can be made for deflated restarts in the cases `− = 0, `+ = 5 and `− = 1, `+ = 4.
In the remaining cases, the point of transition occurs after the relative error has been
reduced to 10−12.

We next consider an entire function, i.e., a function without finite singularities,
such as f(z) = exp(−10z). It is clear that the eigenvectors which belong to the
smallest eigenvalues of A (the largest of −10A) have the greatest influence on f(A).
Selecting ` of them as targets leads to a dramatic acceleration of convergence as shown
in Figure 5.3. On the other hand, targeting at the ` largest eigenvalues of A would
not lead to any improvement.

Finally, we illustrate our results on the interpolation nodes which underly the de-
flated restarting technique. In Theorem 3.2, these nodes are characterized as a subset
of the spectrum of K(k) which is the union of the eigenvalues of its diagonal blocks
G(j) (j = 1, 2, . . . , k). In Figure 5.4 these eigenvalues are plotted against j. In the ter-

minology of Theorem 3.2 the filled (red) dots correspond to Λ(G(j)) \ {θ(j)
1 , . . . , θ

(j)
` },

whereas the crossed (blue) dots correspond to the Ritz values θ
(j)
1 , . . . , θ

(j)
` which
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Fig. 5.2. Approximating f1(A)b = (A − 0.95I)1/2(101I − A)−1b (left) and f2(A)b = (101I −
A)1/2(A − 0.95I)−1b (right), respectively: Convergence history of the Arnoldi method with restart
length m = 10 and ` = 5 target eigenvalues (`− smallest and `+ largest). The legend on the left also
applies to the plot on the right.
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Fig. 5.3. Approximating exp(−10A)b: Convergence history of the Arnoldi method with restart
length m = 10 and the ` = 0, 1, 3 and 5 smallest eigenvalues of A as targets.

approximate the target eigenvalues. If we restart without deflation the km eigenval-
ues of G(j), j = 1, 2, . . . , k, are exactly the nodes we interpolate at the k-th restart.

In the case of deflation the nodes in the k-th restart are Λ(G(j)) \ {θ(j)
1 , . . . , θ

(j)
` },

j = 1, 2, . . . , k, together with θ
(k)
1 , . . . , θ

(k)
` . The latter ones converge to the target

eigenvalues of A, whereas the first ones show an asymptotically periodic behavior, i.e.
they possess (at most) 2` limit points in the spectral interval of A (which is observed
for arbitrary restart lengths m but is proven only for m = 1, see [2]).

5.2. A symmetric problem: 3D-Laplacian. We approximate f(A)b =

A−1/2b, where A ∈ Rn3×n3

is the matrix obtained by finite-difference discretization
of the 3D-Laplace operator on the unit-cube with n = 100 interior grid-points in each
Cartesian coordinate direction, and b ∈ Rn3

is a random vector of unit length. To
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Fig. 5.4. Interpolation points associated with restarted Arnoldi (restart length m = 10) without
(left) and with deflation (right, with ` = 5 target eigenvalues, namely the `− = 4 smallest and the
`+ = 1 largest).

this end we replace f(z) = z−1/2 by its well-known Zolotarev rational approximation
r17(z) of type (16, 17) on the convex hull of Λ(A) [1, Appendix E]. This rational ap-
proximation is sufficiently accurate to reach the absolute stopping accuracy ε = 10−12,
on which our timings of the algorithms are based. More precisely, we stopped iterating
once an approximation f (k) satisfied ‖f(A)b − f (k)‖ ≤ ε. We considered an Arnoldi
approximation of high order 1000 as “exact” solution to f(A)b.

In Table 5.1 we summarize the results of our numerical tests. Since A is symmetric
we have used the Lanczos three-term recurrence in both the restarted and standard
(unrestarted) Krylov algorithms. The target eigenvalues are those closest to the origin.
Note that the unrestarted Lanczos method requires only 395 matrix-vector products
to satisfy our stopping criterion. It is known that this method yields near-optimal
approximations (1.2) satisfying

‖f(A)b − fm‖ ≤ 2 min
p∈Pm−1

max
z∈Λ(A)∪Λ(Hm)

|f(z)− p(z)|

(cf. [14, 34]). This near-optimality is, of course, hard to beat with a restarted Lanczos
method, which usually requires more matrix-vector products. However, the number
of matrix-vector products of the restarted Lanczos method decreases significantly
and comes closer to 395 as the number of approximate eigenvectors ` is increased.
The number of matrix-vector products also decreases with increasing restart length
m, the intuition behind this being that the restarted Lanczos method then “comes
closer” to the unrestarted Lanczos method (the Krylov basis vectors become “closer”
to orthogonal).

For symmetric problems the main advantage of our restarted method comes into
effect when the Krylov basis vectors are sufficiently long that they can no longer be
held in the main memory of the computer. If moving these vectors to secondary
storage and reloading them when needed is not an attractive option, one could em-
ploy a two-pass Lanczos variant, in which the Krylov basis vectors are regenerated
when they are required for assembling the approximation to f(A)b. This doubles the
number of matrix-vector products and is clearly not an option when matrix-vector
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products are expensive, e.g., for matrices A with sufficiently many nonzero entries.
In our example, where A has at most 7 nonzeros per row, the restarted method with
deflation is already significantly faster than the two-pass Lanczos method, e.g., for
m = 50 and ` = 5.

A pragmatic recommendation for using a restarted Lanczos method for approxi-
mating f(A)b is to choose the restart length m as large as possible (this is dictated by
the available main memory of the computer and the feasibility of evaluating f(H(k))
efficiently). The choice of a suitable value of ` depends on the target eigenvalues and
properties of f , but, as a rule of thumb, we found ` ∈ [0.05m, 0.1m] often success-
ful. More elaborate heuristics which have been proposed in the context of restarted
Krylov subspace methods for eigenvalue calculations [38, 41] could also be applied for
determining `.

m ` comp. time [s] mv products accuracy

∞ (I) — 28.3 395 9e-13
∞ (II) — 53.3 790 9e-13

25 0 98.7 1350 9e-13
25 1 68.5 875 9e-13
25 2 51.6 650 8e-13
25 5 40.0 475 9e-13
25 10 41.4 450 2e-13
50 0 61.4 850 8e-13
50 1 45.4 600 5e-13
50 2 38.1 500 4e-13
50 5 35.4 450 1e-13
50 10 37.3 450 1e-13

Table 5.1
Computation times, number of matrix-vector products and stopping accuracy for computing

A−1/2b with different restart lengths m and varying number of approximate eigenvectors `. Here,
m = ∞ (I) refers to the standard (unrestarted) Lanczos method, while m = ∞ (II) denotes the
(unrestarted) two-pass Lanczos method.

5.3. A nonsymmetric problem: advection-diffusion. We consider the ini-
tial value problem (cf. [36, 3])

∂tu−
1

Pe
∆u+ a · ∇u = 0 in Ω = (−1, 1)× (0, 1), (5.1a)

u = 1− tanh(Pe) on Γ0, (5.1b)

u = 1 + tanh((2x+ 1) Pe) on Γin, (5.1c)

∂u

∂n
= 0 on Γout, (5.1d)

u(x, 0) = u0(x) in Ω (5.1e)

for the advection-diffusion equation, where the convective field is given as

a(x, y) =

[
2y(1− x2)
−2x(1− y2)

]
, (x, y) ∈ Ω,

and the boundary Γ = ∂Ω is divided into the inflow boundary Γin := [−1, 0] × {0},
the outflow boundary Γout := [0, 1] × {0} and the remaining portion Γ0. Pe denotes
the Péclet number.
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We discretize the advection-diffusion operator for Pe = 10 in space using linear
finite elements on a triangulation generated by the adaptive mesh generation facility in
the Comsol Multiphysics finite element software (version 3.3a). After multiplying
from the left by the square root of the (lumped) mass matrix, the semi-discretized
problem is a system of ODEs

u ′(t) = Au(t) + g , u(0) = u0,

where A ∈ RN×N with N = 5, 042, N = 12, 269 and N = 30, 341 (after zero, one and
two refinements of the mesh, respectively) and the constant inhomogeneous term g
results from the inhomogeneous Dirichlet boundary condition. We then approximate
the matrix exponential part of the solution

u(t) = exp(tA)(u0 +A−1g)−A−1g (5.2)

at time t = 6, at which the flow has reached a steady state, starting from rest u0 = 0,
using the unrestarted Arnoldi approximation as well as the restarted Arnoldi method
with and without deflation. We note that an equivalent representation for the
function u(t) in (5.2) is given by

u(t) = u0 + tϕ1(tA)(Au0 + g), ϕ1(z) =
exp(z)− 1

z
, (5.3)

where ϕ1 is known as the first so-called “phi-function” in the exponential integrator
literature. The evaluation of (5.3) is slightly less expensive than that of (5.2) due to
the absence of linear system solves, where it should be noted that, if solving systems
with A is feasible, rational Krylov methods may be the better alternative. Moreover,
(5.2) could be affected by ill-conditioning whenever eigenvalues of A approach the
origin; this is not an issue in (5.3) as ϕ1 is an entire function. However, we use (5.2)
in our numerical computations to make the results comparable to the ones reported
in [3, Section 6.3]

In [3, Section 6.3] we considered a similar advection-diffusion problem and ob-
served a loss of about 4–6 digits of final accuracy when replacing exp(z) in (5.2)
by its rational Cody–Meinardus–Varga (CMV) approximation r16(z) of type (16, 16),
compared to using the Matlab function expm. The reason for this loss is that the
CMV approximation is only optimal on (−∞, 0] and A’s field of values extends far
outside this interval. We found experimentally that the restarted Arnoldi method
obtains about the same final accuracy as with expm if we use a shifted approximation
exp(z) ≈ exp(−σ)r16(z+σ) with σ = 15 (similar observations were made in [22, 35]).
This indicates that the loss of accuracy observed in [3] was not caused by an instabil-
ity in our implementation of the restarted Arnoldi method, but can be attributed to
the insufficient accuracy of the rational approximation used there.

The results of our numerical tests are given in Table 5.2, the absolute stopping
accuracy being ε = 10−12. The target eigenvalues were those closest to the origin.
Besides the advantage of the fixed storage requirements of m Krylov basis vectors, the
restarted Arnoldi method requires a number of inner-products which grows only lin-
early with the number of matrix-vector products (compared to a quadratic growth in
the unrestarted case). This is the reason why the restarted Arnoldi method performs
faster than the unrestarted version even for moderate problem sizes (for all three
problem sizes the restarted method is about 2–4 times faster than the unrestarted,
cf. Table 5.2). We again observe that deflation significantly reduces the number of
matrix-vector products and thereby improves the overall performance of our restarted
Arnoldi method.
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N m ` comp. time [s] mv products accuracy

5,042

∞ — 12.32 705 9e-13
80 0 5.64 2800 8e-13
80 1 3.91 1840 4e-13
80 2 3.26 1440 7e-13
80 5 3.22 1360 4e-13
80 10 3.60 1360 2e-13

12,296

∞ — 71.1 1230 9e-13
140 0 34.9 5040 4e-13
140 1 24.1 3360 6e-13
140 2 18.7 2520 8e-13
140 5 19.2 2520 1e-13
140 10 19.3 2380 4e-13

30,341

∞ — 482 2175 9e-13
200 0 179 8200 5e-13
200 1 152 6800 5e-13
200 2 136 6000 1e-13
200 5 126 5400 4e-13
200 10 112 4600 5e-13

Table 5.2
Computation times, number of matrix-vector products and stopping accuracy for computing

u(t) = exp(tA)(u0 + A−1g) (cf. (5.2)) for t = 6

with A ∈ RN×N stemming from finite-element discretizations of the same advection-
diffusion problem with varying mesh-size. We compare the performance of the un-
restarted Arnoldi method (m = ∞) with the restarted Arnoldi method with and
without deflation.

6. Summary. We have shown how the spectral deflation techniques known for
restarted Krylov subspace methods for computing selected eigenpairs and solving
linear systems of equations can be extended to the approximation of f(A)b. The
associated approximation rests on an extension of the representation Lemma 2.2 to
Krylov-like decompositions, which in turn represents a generalization of the Krylov
decompositions of Stewart to accommodate linearly dependent vectors. The resulting
deflated restarting scheme was characterized as an interpolation process, in which a
number of interpolation nodes close to the target are replaced by improved eigen-
value approximations in each cycle. Numerical examples indicate that this technique
can substantially accelerate restarted Arnoldi approximations to f(A)b by deflating
eigenvalues close to singularities or dominant values of f . To our best knowledge, this
deflated restarting technique is the only available Krylov method for approximating
f(A)b with short recurrences and spectral adaptation, even in the absence of a-priori
information on the spectrum of A.
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