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Introduction

» Given: Large sparse matrix A € C"*N vector b € CV,
function f(z) analytic on the eigenvalues A(A).
» Task: Compute f(A)b without forming f(A) explicitly.
» Applications:
> A~1b is the solution of Ax = b,
> exp(tA)b is the solution of u'(t) = Au(t), u(0
> cosh(tv/A)b solves u”(t) = Au(t), u(0)
> exp(tvV/A)b, sgn(A)b, log(A)b (see a
> A=Y/2p for Neumann-to-Dirichlet ma

Dirichlet

Neumann

The rational Arnoldi method

» Principle: Implicitly compute a low-order rational function

ro(A)b =~ f(A)b with prescribed poles &3,...,&,1 € C.

» Implementation: Use Ruhe's rational Arnoldi process [10]:

Set vi ;= b/||b]|.

For j=1,...,n
Compute x; := (A — &)1y,
Orthogonalize w; := x; — VjVJ’-L’xj.

Set Vit1 = Wj/ |Wj||.

» Output: Rational Krylov basis V.1 = [vq,..., v, 1],

VH .V, 1 =1,.1, and rational Arnoldi decomposition

n+1
AV, 1K, =V, 1H,, with {K, H,} c Clm)xn,

» Rational Arnoldi approximation of order n is
f, =V, f(A)VIb, A, :=VIAV,.

(Note that f(A,) is a function of a small n X n matrix.)

Useful properties of f,

» There exists a rational function r,(z) with prescribed poles
&1, ...,&,1 such that f, = r,(A)b.
» This function r,(z) is a rational interpolant for f(z) with

nodes A(A,) = {601,...,0,}, called rational Ritz values.

» Define the nodal function
Y (z—061)---(z—0,)
EALA Py by s

Rational Ritz values {6} are optimal in the sense that

s,(A)b|| is minimal among all nodal functions.

Three practical problems

How to choose the poles &;,&,...7

(Clearly depends on f(z) and on spectral properties of A.)
. What happens if x; ~ (A — 1)~ !v; inexactly?
(Residuals are the only practically accessible information.)

How large is the error ||f(A)b —f,|[|?

(For general functions f(z), no residual equation available.)

Adaptive poles for Markov functions

» Can answer Question 1 for the particular function class

f(2) = /r dv(x)

)
X —Z

where 7 is a (complex) measure with support ' C C.

» Can prove (see [2])

[F(A)b — ]| < [Isu(A)b]- / DL A) 7 4 (x)

Sn(x)

» Rational function s,(z) is explicitly known at iteration n

zeros 10;}, poles {&;1), can select the next pole &, as
(zeros {0; j

¢ 1 dy
, = arg max
© o sy (x) dx

(cf. [4, 5, 7]).
» Feature: So far no assumptions on the matrix Al

» Example 1: Compute log(A)b for highly nonnormal A.

A(A) and first 30 adaptive poles | f(A)b — f_|| for various pole sequences
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» Example 2: Compute A~/?b for 2D-Laplacian, N = 10*.

Error || f(A)b - fn || for various pole sequences
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Spectral adaptivity

» Need to understand the (superlinear) decay of ||s,(A)b]|.

» So far only possible for Hermitian A, in which case

(A)b|| < ||b 2(2)].
Is:(A)bl| < [bl] max Js(z)

» Typical linear error bounds obtained by assuming that s,(z)
is uniformly small on spectral interval [Ayin, Amax.

» This assumption ignores the fine structure of A(A)!

» Example: A = tridiag(—1, 2, —1), extended Krylov.

N = 100, iteration n = 30

Observations: s,(z) uniformly small on a subinterval S,
and Ritz values in [Ayin, Amax] \ S are close to A(A) \ S.
» Optimality and interlacing property of rational Ritz values

allow for asymptotic description of their distribution:
> Let A(A) be described by a probability measure o, e.g.,
do 1
dx 7T\/X(4 — X) |
_et the poles &7, ..., &, be described by a measure v4,
|| =t=n/N, eg.,
vy =1t-(00+ 0c0)/2.

> Then the distribution of Ritz values A(A,) is given as the

constrained equilibrium measure u; < o, ||p¢|| = t, which

minimizes the energy 1 +— I(p, pu) — 21 (v, @),
1

[(p1, pa) = // log dpa(x) dpa(y):

x =y

Moreover, S(t) := supp(c — ¢) C [Amin, Amax]-

Ritz values /\(An) converging to A(A)
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Inexact solves & error estimation

» In practical rational Arnoldi implementations the linear

systems (A — 1)x; = v; are often solved inexactly =

Need to quantify effect on the Arnoldi approximation f,,.
» Collect residuals rj :=v; — (A — &l)x; in Ry, = [r1, ..., 1y,

and derive an inexact rational Arnoldi decomposition
AV, 1Ky = VoHy + R,
which can be rewritten as an exact decomposition [9]
(A+E,)V,1K, =VoiH,  E, = —R,K,'VI,.

» |If the projection :Av\,, is computed from data {K,,H,}, the

resulting Arnoldi approximation f, is close to f(A+E,)b.

» ldea: Decompose the error

|F(A)b—fol| < [F(A)b — (A + E)b + (A +E,)b — ],
—_— ) ~——

sensitivity error approximation error

and estimate

sensitivity error & ||f(VIAV,)Vb — £(A,)V/b]|.

» In conjunction with approximation error estimator of [1, 6]
we obtain a practical stopping criterion: terminate when
the approximation error falls below the sensitivity error.

» Example: Compute A—1/2h for 2D-Laplacian, N = 10%,

using multigrid solver with relres = 1075

Error || f(A)b - fn || with inexact solves
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approximation error est.
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— sensitivity error estimate
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Matlab code

available from www.guettel.com/markovfunmv
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