Towards black-box rational Krylov methods for matrix functions f(A)b: Automated parameter selection, inexact solves and error estimation

Stefan Güttel (stefan.guettel@unige.ch)

Introduction

- ▶ **Given:** Large sparse matrix $A \in \mathbb{C}^{N \times N}$, vector $b \in \mathbb{C}^N$, function f(z) analytic on the eigenvalues $\Lambda(A)$.
- ▶ **Task:** Compute f(A)b without forming f(A) explicitly.
- **►** Applications:
- $\triangleright A^{-1}b$ is the solution of Ax = b,
- $\triangleright \exp(tA)b$ is the solution of u'(t) = Au(t), u(0) = b,
- $\triangleright \cosh(t\sqrt{A})$ b solves u''(t) = Au(t), u(0) = b, u'(0) = 0,
- $\triangleright \exp(t\sqrt{A})$ b, sgn(A)b, log(A)b (see also [8]),
- $\triangleright A^{-1/2}b$ for Neumann-to-Dirichlet maps:

The rational Arnoldi method

- ► Principle: Implicitly compute a low-order rational function $r_n(\mathsf{A})\mathsf{b} \approx f(\mathsf{A})\mathsf{b}$ with prescribed poles $\xi_1,\ldots,\xi_{n-1} \in \mathbb{C}$.
- ► Implementation: Use Ruhe's rational Arnoldi process [10]: Set $v_1 := b/\|b\|$.

For $j = 1, \ldots, n$

- Compute $x_i := (A \xi_i I)^{-1} v_i$.
- Orthogonalize $w_j := x_j V_j V_i^H x_j$.
- Set $v_{j+1} := w_j / ||w_j||$.
- ▶ Output: Rational Krylov basis $V_{n+1} = [v_1, \dots, v_{n+1}],$ $V_{n+1}^H V_{n+1} = I_{n+1}$, and rational Arnoldi decomposition
 - $\mathsf{AV}_{n+1}\mathsf{K}_n=\mathsf{V}_{n+1}\mathsf{H}_n, \quad \text{with} \quad \{\mathsf{K}_n,\mathsf{H}_n\}\subset \mathbb{C}^{(n+1) imes n}.$
- ► Rational Arnoldi approximation of order *n* is

 $f_n := V_n f(A_n) V_n^H b$, $A_n := V_n^H A V_n$.

(Note that $f(A_n)$ is a function of a small $n \times n$ matrix.)

Useful properties of f_n

- ▶ There exists a rational function $r_n(z)$ with prescribed poles ξ_1, \ldots, ξ_{n-1} such that $f_n = r_n(A)b$.
- ▶ This function $r_n(z)$ is a rational interpolant for f(z) with nodes $\Lambda(A_n) = \{\theta_1, \dots, \theta_n\}$, called rational Ritz values.
- ► Define the nodal function

$$s_n(z) := \frac{(z-\theta_1)\cdots(z-\theta_n)}{(z-\xi_1)\cdots(z-\xi_{n-1})}.$$

Rational Ritz values $\{\theta_i\}$ are optimal in the sense that $||s_n(A)b||$ is minimal among all nodal functions.

Three practical problems

- 1. How to choose the poles ξ_1, ξ_2, \dots ? (Clearly depends on f(z) and on spectral properties of A.)
- 2. What happens if $x_j \approx (A \xi_j I)^{-1} v_j$ inexactly? (Residuals are the only practically accessible information.)
- 3. How large is the error $||f(A)b f_n||$? (For general functions f(z), no residual equation available.)

Adaptive poles for Markov functions

► Can answer Question 1 for the particular function class

$$f(z) = \int_{\Gamma} \frac{\mathrm{d}\gamma(x)}{x-z},$$

where γ is a (complex) measure with support $\Gamma \subset \mathbb{C}$.

► Can prove (see [2])

$$\|f(\mathsf{A})\mathsf{b}-\mathsf{f}_n\|\leq \|s_n(\mathsf{A})\mathsf{b}\|\cdot \left\|\int_{\Gamma} \frac{(\mathsf{x}\mathsf{I}-\mathsf{A})^{-1}}{s_n(\mathsf{x})} \,\mathrm{d}\gamma(\mathsf{x})\right\|.$$

▶ Rational function $s_n(z)$ is explicitly known at iteration n(zeros $\{\theta_i\}$, poles $\{\xi_i\}$), can select the next pole ξ_n as

$$\xi_n = \arg\max_{x \in \Gamma} \left| \frac{1}{s_n(x)} \frac{\mathrm{d}\gamma}{\mathrm{d}x} \right|$$

(cf. [4, 5, 7]).

- ► **Feature:** So far no assumptions on the matrix A!
- **Example 1:** Compute log(A)b for highly nonnormal A.

Example 2: Compute $A^{-1/2}b$ for 2D-Laplacian, $N=10^4$.

Spectral adaptivity

- ▶ Need to understand the (superlinear) decay of $||s_n(A)b||$.
- ► So far only possible for Hermitian A, in which case

$$||s_n(A)b|| \leq ||b|| \max_{z \in \Lambda(A)} |s_n(z)|.$$

- ▶ Typical linear error bounds obtained by assuming that $s_n(z)$ is uniformly small on spectral interval $[\lambda_{\min}, \lambda_{\max}]$.
- ▶ This assumption ignores the fine structure of $\Lambda(A)$!
- **Example:** A = tridiag(-1, 2, -1), extended Krylov.

Observations: $s_n(z)$ uniformly small on a subinterval S, and Ritz values in $[\lambda_{\min}, \lambda_{\max}] \setminus S$ are close to $\Lambda(A) \setminus S$.

- Optimality and interlacing property of rational Ritz values allow for asymptotic description of their distribution:
- \triangleright Let $\Lambda(A)$ be described by a probability measure σ , e.g.,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = \frac{1}{\pi\sqrt{x(4-x)}}.$$

 \triangleright Let the poles ξ_1, \ldots, ξ_n be described by a measure ν_t , $\|\nu_t\| = t = n/N$, e.g.,

$$\nu_t = t \cdot (\delta_0 + \delta_\infty)/2.$$

 \triangleright Then the distribution of Ritz values $\Lambda(A_n)$ is given as the constrained equilibrium measure $\mu_t \leq \sigma$, $\|\mu_t\| = t$, which minimizes the energy $\mu \mapsto I(\mu, \mu) - 2I(\nu_t, \mu)$,

$$I(\mu_1,\mu_2):=\iint \log rac{1}{|x-y|}\,\mathrm{d}\mu_1(x)\,\mathrm{d}\mu_2(y).$$

Moreover, $S(t) := \text{supp}(\sigma - \mu_t) \subseteq [\lambda_{\min}, \lambda_{\max}].$

Inexact solves & error estimation

- ► In practical rational Arnoldi implementations the linear systems $(A - \xi_i I)x_i \approx v_i$ are often solved inexactly \Longrightarrow Need to quantify effect on the Arnoldi approximation f_n .
- ► Collect residuals $\mathbf{r}_j := \mathbf{v}_j (\mathbf{A} \xi_j \mathbf{I})\mathbf{x}_j$ in $\mathbf{R}_n = [\mathbf{r}_1, \dots, \mathbf{r}_n]$, and derive an inexact rational Arnoldi decomposition

$$\mathsf{AV}_{n+1}\underline{\mathsf{K}_n} = \mathsf{V}_{n+1}\underline{\mathsf{H}_n} + \mathsf{R}_n,$$

which can be rewritten as an exact decomposition [9]

$$(A + E_n)V_{n+1}\underline{K_n} = V_{n+1}\underline{H_n}, \quad E_n := -R_n\underline{K_n}^{\dagger}V_{n+1}^H.$$

- ▶ If the projection \widetilde{A}_n is computed from data $\{K_n, H_n\}$, the resulting Arnoldi approximation f_n is close to $f(A + E_n)b$.
- ► Idea: Decompose the error

and estimate

$$||f(A)b - \widetilde{f}_n|| \le ||f(A)b - f(A + E_n)b|| + ||f(A + E_n)b - \widetilde{f}_n||$$
, sensitivity error approximation error

sensitivity error $\approx \|f(V_n^H A V_n) V_n^H b - f(\widetilde{A}_n) V_n^H b\|$.

- ▶ In conjunction with approximation error estimator of [1, 6] we obtain a practical stopping criterion: terminate when the approximation error falls below the sensitivity error.
- **Example:** Compute $A^{-1/2}b$ for 2D-Laplacian, $N=10^4$, using multigrid solver with $relres = 10^{-8}$.

Error $|| f(A)b - f_n ||$ with inexact solves

Matlab code

available from www.guettel.com/markovfunmv

References

- [1] M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel, Linear Algebra Appl. 429, 2293–2314 (2008).
- [2] B. Beckermann and S. Güttel, Superlinear convergence of rational Arnoldi, in preparation.
- [3] B. Beckermann, S. Güttel and R. Vandebril, SIAM J. Matrix Anal. Appl. 31, 1740–1774 (2010).
- [4] V. Druskin, C. Lieberman and M. Zaslavsky, SIAM J. Sci. Comput. **32**, 2485–2496 (2010).
- [5] V. Druskin and V. Simoncini, Systems & Control Letters, to appear.
- [6] S. Güttel, Rational Krylov Methods for Operator Functions (PhD thesis, TU Freiberg, 2010).
- [7] S. Güttel and L. Knizhnerman, Automated pole selection for Markov functions, submitted. [8] N. J. Higham, Functions of Matrices. Theory and Computation (SIAM, Philadelphia, 2008).
- [9] R. B. Lehoucq and K. Meerbergen, SIAM J. Matrix Anal. Appl. 20, 131–148 (1998).
- [10] A. Ruhe, IMA Vol. Math. Appl. **60**, 149–164 (1994).