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Automated parameter selection for rational Arnoldi approximation of
Markov functions
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Rational Arnoldi is a powerful method for approximating functions of large sparse matrices times a vector. The selection of
asymptotically optimal parameters for this method is crucial for its fast convergence. We present a heuristic for the automated
pole selection when the function to be approximated is of Markov type, such as the matrix square root. The performance of
this approach is demonstrated at several numerical examples.
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1 Introduction

We are interested in the efficient approximation of a matrix function f(A)v , where A ∈ CN×N , v ∈ CN \ {0}, and the
function is of Markov (or Cauchy–Stieltjes) type

f(z) =
∫

Γ

dγ(x)
z − x

(1)

with some (complex) measure γ supported on a closed set Γ ∈ C. A particularly important example of such a function is

f(z) = z−1/2 =
∫ 0

−∞

1
z − x

dx
π
√
−x

.

The problem of approximating f(A)v is of considerable interest in many areas of scientific computing. For instance, some
interesting solutions of the equation

Au(t)− d2u

dt2
(t) = g(t)v

can be represented as u(t) = f(A)v , f(z) being a rational function of
√
z and e−t

√
z (cf. [4, 6]). Other examples are the

computation of Neumann-to-Dirichlet and Dirichlet-to-Neumann maps [1, 5].
In most applications, A is very large and sparse (e.g., as a finite-element discretization of a differential operator) so that

explicitly computing and storing the dense matrix f(A) is infeasible. A popular method that circumvents this problem is
known as rational Arnoldi. It is based on the extraction of an approximation fn from a rational Krylov space [12, 13]

Qn(A, v) := span
{
pn−1

qn−1
(A)v : pn−1 polynomial of degree ≤ n− 1

}
, (2)

qn−1(z) :=
n−1∏
j=1
ξj 6=∞

(z − ξj),

where the parameters ξj ∈ C are different from the eigenvalues Λ(A). Note that fractions in (2) run over the linear space
of rational functions of type (n − 1, n − 1) with a prescribed denominator qn−1, and that Qn(A, v) reduces to a polynomial
Krylov space if we set all poles ξj =∞. If the dimension of Qn(A, v) is n, as we assume in the following, we can compute
an orthonormal basis Vn = [v1, . . . , vn]. The rational Arnoldi approximation is then defined as

fn := Vnf(An)V Hn v , An := V Hn AVn. (3)

If n is relatively small, then f(An) can be evaluated using algorithms for dense matrix functions (see [10]). It is well known
that fn is a near-optimal approximation for f(A)v fromQn(A, v) (see, e.g., [3,4,9]), that is, fn is very close to the orthogonal
projection VnV Hn f(A)v . Therefore the poles ξj need to be chosen such that Qn(A, v) contains a good approximation for
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f(A)v , and of course, such a choice depends both on the spectral properties of A and the function f(z). This necessity for
choosing optimal parameters is a serious problem that prevents rational Arnoldi from being used in practice more widely.
Recently, interesting strategies for the adaptive selection of the poles ξj have been proposed for the exponential function [7]
and the transfer function [8]. We shall build on these ideas for proposing an adaptive pole selection strategies for functions of
type (1).

This paper is structured as follows: In Section 2 we review the rational Arnoldi method and some of its important properties.
In Section 3 we present our adaptive version of rational Arnoldi for functions of type (1). Finally, in Section 4, we demonstrate
the performance of our parameter-free (free of mathematically essential parameters) algorithm at some numerical examples.
Throughout ‖ · ‖ denotes the Euclidian norm and I is the identity matrix of size N ×N . Vectors are printed in bold face.

2 Rational Arnoldi method

A stable iterative procedure for computing an orthonormal basis Vn = [v1, . . . , vn ] of the rational Krylov space Qn(A, v)
with poles ξj is the rational Arnoldi algorithm by A. Ruhe [13]. Let σ be a finite number different from all ξj , and define
Ã := A−σI and ξ̃j := ξj−σ. Note that the rational Krylov space Q̃n(Ã, v) build with the poles ξ̃j coincides withQn(A, v).
We may therefore as well construct an orthonormal basis for Q̃n(Ã, v) in the following.

Starting with v1 = v/‖v‖, in each iteration j = 1, . . . , n one utilizes a modified Gram–Schmidt procedure to orthogonalize

wj+1 =
(
I − Ã/ξ̃j

)−1
Ãvj (4)

against {v1, . . . , vj} as to obtain the vector vj+1, ‖vj+1‖ = 1, satisfying the relation

vj+1hj+1,j = wj+1 −
j∑
i=1

vihi,j , hi,j = vHi wj+1. (5)

Equating (4) and (5), and collecting the Fourier coefficients in Hn = [hi,j ] ∈ Cn×n, we obtain in the n-th iteration of the
rational Arnoldi algorithm a decomposition

ÃVn
(
In +Hndiag(ξ̃−1

1 , . . . , ξ̃−1
n )
)

+ vn+1hn+1,nξ̃
−1
n eTn = VnHn + vn+1hn+1,ne

T
n , (6)

where In denotes the n× n identity matrix and en its last column. Note that the second summand on the left-hand side of (6)
vanishes when setting ξ̃n =∞ (i.e., ξn =∞, which corresponds to a polynomial Krylov step, cf. [3, 9]). In this case we find
that the matrix An required for computing the rational Arnoldi approximation (3) can be calculated from (6) without explicit
projection as

An = V Hn AVn = V Hn ÃVn + σIn

= Hn

(
In +Hndiag(ξ̃−1

1 , . . . , ξ̃−1
n )
)−1 + σIn. (7)

Remark 2.1 In exact arithmetic the rational Arnoldi approximation (3) is independent of the choice of σ. However, for
numerical stability of the rational Arnoldi algorithm, σ should have a large enough distance to the poles ξj , because otherwise
the pole and the zero in the fraction of (4) may “almost cancel out”, causing accuracy loss in the rational Krylov basis [11].

We now list some well-known properties of the rational Arnoldi approximation (3) which are relevant for our further
ongoing. The interested reader may be referred to [3, 9] for more details.

1. By the definition of Qn(A, v) there exists a rational function rn(z) of type (n− 1, n− 1) such that

fn = rn(A)v =
pn−1

qn−1
(A)v .

2. This function rn(z) is actually a rational interpolant for f(z) with prescribed denominator and interpolation nodes
Λ(An) = {θ1, . . . , θn}, the so-called rational Ritz values. Defining the rational nodal function of type (n, n− 1),

sn(z) :=
∏n
k=1(z − θk)
qn−1(z)

, (8)

by the Hermite–Walsh formula for rational interpolants (see, e.g., [14, Theorem VIII.2] or [2]) we have

‖f(A)v − rn(A)v‖ ≤ ‖sn(A)v‖ ·
∥∥∥∥∫

Γ

(xI −A)−1

sn(x)
dγ(x)

∥∥∥∥ . (9)

3. The term ‖sn(A)v‖ is minimal among all rational functions of the form s̃n(z) = (zn +αn−1z
n−1 + · · ·+α0)/qn−1(z)

(see, e.g., [9, Lemma 4.5]).
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3 Adaptive pole selection

Note that the rational nodal function sn(z) of (8) is explicitly known in the n-th iteration of the rational Arnoldi method: It
has poles ξ1, . . . , ξn−1 and its zeros are the rational Ritz values Λ(An). The aim of an adaptive pole selection strategy is, of
course, to make (a bound for) the approximation error (9) smallest possible in every iteration of the rational Arnoldi method.
In view of (9) we will therefore try to make |sn(x)| uniformly large on Γ by choosing the next pole ξn as

|sn(ξn)| = min
x∈Γ
|sn(x)|.

This choice is a straightforward adaption of a pole selection heuristic proposed in [7, 8], where the nodal function has to be
large on a negative real interval Γ and small on −Γ. In our case we do not have such a symmetry, but still we hope that our
nodal rational function sn is large on Γ and small on some “relevant subset” of the numerical range of A (recall from above
that ‖sn(A)v‖ is minimal!). In Algorithm 1 we summarize our rational Arnoldi method with adaptive pole selection.

—————————————————————————————————————————————————
Algorithm 1. Rational Arnoldi method for f(A)v with adaptive poles.
Input: Function f(z) of type (1), matrix A ∈ CN×N , vector v ∈ CN \ {0}.
Output: Rational Arnoldi approximations fj and pole sequence ξ1, ξ2, . . .

1. Set v1 := v/‖v‖.
2. For j = 1, . . . , n
3. Temporarily set ξj =∞, perform polynomial Krylov step for wj+1 and orthogonalize (eqns. (4) and (5)).
4. Compute projection Aj = V Hj AVj using eqn. (7).
5. If required, compute j-th order Arnoldi approximation fj = Vjf(Aj)V Hj v .

6. Compute Λ(Aj) = {θ1, . . . , θj} and find minimum ξj ∈ Γ of |sj(z)|=
∣∣∣∏j

k=1(z − θk)
/
qj−1(z)

∣∣∣.
7. Perform rational Krylov step for wj+1 and orthonormalize for vj+1 (eqns. (4) and (5)).

—————————————————————————————————————————————————

In a practical implementation of Algorithm 1 one would use an a-posteriori error estimator in Step 5 to stop the iteration
if ‖f(A)v − fj‖ is below some tolerance. Note that, in contrast to the algorithms presented in [7, 8], we do not require any
estimation for the spectral interval of A; in fact, we will demonstrate in the following section that our algorithm performs well
also for highly nonsymmetric and nonnormal matrices. A detailed analysis of this algorithm will be subject of future work.

4 Numerical experiments

To test the performance of our method, we first consider the computation of A−1/2v with v = [1, . . . , 1]T and the matrices

A1 = diag(1, 1.01, . . . , 1000) and A2 = diag(1, 1.01, . . . , 1.1, 500, 500.01, . . . , 1000).

Note that both matrices have the same spectral interval, but A2 has a large gap in its spectrum. For Hermitian A we have

‖f(A)v − fn‖ ≤ ‖v‖ max
z∈Λ(A)

|f(z)− rn(z)| ≤ ‖v‖ max
z∈[λmin,λmax]

|f(z)− rn(z)|.

It is well-known that, knowing [λmin, λmax], one can explicitly construct a sequence of rational interpolants {rn} for f(z)
which reduces the uniform approximation error for f(z) on [λmin, λmax] linearly with an optimal rate given by capacity of
the underlying condenser cap([λmin, λmax],Γ), in our case with Γ = (−∞, 0]. Using the near-optimality property of rational
Arnoldi it was shown in [3] that there exists a pole sequence ξ1, ξ2, . . . and a constant C > 0 independent of n such that the
error reduction is at least linear

‖f(A)v − fn‖ ≤ C · cap([λmin, λmax],Γ)−n . C · exp(π2/ log(16λmax/λmin))−n. (10)

In Figure 1 (left) we show the convergence of Algorithm 1 for the two matrices A1, A2 and also the convergence rate (10)
with λmin = 1 and λmin = 500 respectively. Notice that, although λmin(A2) = 1, the method converges as if λmin = 500
because the few smallest eigenvalues are “deflated” in early iterations of the method.

We now consider 1000× 1000 matrices A3 and A4 being the finite-difference discretization of the 1D- and 3D-Laplacian
with homogeneous Dirichlet boundary, respectively, and random v ∈ R1000. In Figure 1 (right) we show the convergence
of Algorithm 1. Note that the convergence seems slightly faster than the linear rate of (10), particularly in later iterations, as
superlinear convergence effects take place due to spectral adaption of the rational Arnoldi method [2].
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Fig. 1 Convergence of rational Arnoldi for f(A)v = A−1/2v , for various symmetric matrices A1, . . . , A4 (described in the text), where
the poles are chosen adaptively on Γ = (−∞, 0]. The dashed lines indicate the linear convergence rate of (10).
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Fig. 2 Left: Eigenvalues of a highly nonnormal random matrix A ∈ C200×200. Right: Convergence of rational Arnoldi for f(A)v =

A−1/2v , random vector v , with adaptive poles on Γ = (−∞, 0].

The last example is more challenging: Consider a random diagonalizable matrix A ∈ C200×200 having eigenvalues in the
unit disk under the constraint that the distance of each eigenvalue to Γ is at least 0.1. The eigenvalues of this matrix are shown
in Figure 2 (left). We remark that A is highly nonnormal: Although the moduli of its eigenvalues are nicely bounded above
and below, it has a condition number of≈ 2.5×104. To our best knowledge, no existing convergence theory is able to explain
why Algorithm 1 converges so robustly even for this matrix (see Figure 2, right). Note that the usual arguments involving the
numerical range of A fail here, as this set is not even disjoint from Γ.

References
[1] M. Arioli and D. Loghin, Rutherford Appleton Laboratory, Technical Report RAL-TR-2008-003 (2008).
[2] B. Beckermann and S. Güttel, Superlinear convergence of the rational Arnoldi method for matrix functions, in preparation.
[3] B. Beckermann and L. Reichel, SIAM J. Numer. Anal. 47, 3849–3883 (2009).
[4] V. Druskin and L. Knizhnerman, SIAM J. Matrix Anal. Appl. 19, 755–771 (1998).
[5] V. Druskin and L. Knizhnerman, SIAM J. Numer. Anal. 37, 403–422 (1999).
[6] V. Druskin, L. Knizhnerman and M. Zaslavsky, SIAM J. Sci. Comp. 31, 3760–3780, (2009).
[7] V. Druskin, C. Lieberman and M. Zaslavsky, SIAM J. Sci. Comput. 32, 2485–2496 (2010).
[8] V. Druskin and V. Simoncini, Systems & Control Letters, to appear.
[9] S. Güttel, Rational Krylov Methods for Operator Functions (TU Bergakademie Freiberg, 2010), p. vi+175.
[10] N. J. Higham, Functions of Matrices. Theory and Computation (SIAM, Philadelphia, 2008), p. xx+425.
[11] R. B. Lehoucq and K. Meerbergen, SIAM J. Matrix Anal. Appl. 20, 131–148 (1998).
[12] A. Ruhe, Linear Algebra Appl. 58, 391–405 (1984).
[13] A. Ruhe, IMA Vol. Math. Appl. 60, 149–164 (1994).
[14] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain (AMS, Providence, 1969), p. x+398.

Copyright line will be provided by the publisher


