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Abstract We investigate the convergence of the weighted GMRES method
for solving linear systems. Two different weighting variants are compared with
unweighted GMRES for three model problems, giving a phenomenological ex-
planation of cases where weighting improves convergence, and a case where
weighting has no effect on the convergence. We also present new alternative
implementations of the weighted Arnoldi algorithm which may be favourable
in terms of computational complexity, and examine stability issues connected
with these implementations. These implementations of weighted GMRES are
compared for a large number of examples. We find that weighted GMRES
may outperform unweighted GMRES for some problems, but more often this
method is not competitive with other Krylov subspace methods like GMRES
with deflated restarting or BICGSTAB, in particular when a preconditioner is
used.
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1 Introduction

The GMRES method of Saad and Schultz [32] is one of the most popular
Krylov subspace methods for solving a non-Hermitian system of linear equa-
tions Ax = b, where A ∈ CN×N is invertible and b ∈ CN . Given an initial
guess x(0), GMRES computes successive iterates x(k), k = 1, 2, . . . , so that

‖r(k)‖2 = min
p∈Pk

p(0)=1

‖p(A)r(0)‖2,

where Pk denotes the linear space of polynomials of degree at most k, and
r(k) = b−Ax(k) is the k-th residual.

Since GMRES uses the Arnoldi algorithm, its computational cost increases
with each iteration. An alternative is to restart GMRES after m iterations [32],
taking the last computed residual as the next initial residual. We call the
original method full GMRES and the latter restarted GMRES or GMRES(m).
The set of m Arnoldi iterations between successive restarts will be called a
cycle.

Although in exact arithmetic full GMRES is guaranteed to terminate with
the exact solution in at most N steps, the restarted version may stagnate [6,
13,32,39]. Even if stagnation does not occur, convergence can be extremely
slow [5,40,41]. The behaviour of restarted GMRES has been well studied and a
number of remedies for slow convergence have been proposed [12,24,31,35–37].

One such remedy is the weighted GMRES method of Essai [14], shortly de-
noted as WGMRES(m), that aims to improve the convergence of GMRES(m)
by using a weighted inner product that changes at each cycle. This weighted in-
ner product will be called a D-inner product, and is defined for any Hermitian
positive definite matrix D ∈ CN×N and x,y ∈ CN as

〈x,y〉D = yHDx,

where yH represents the Hermitian conjugate of y. The associated D-norm of
a vector x ∈ CN is

‖x‖D =
√
〈x,x〉D.

The WGMRES(m) method also starts from an initial guess x(0), and then
computes successive approximations x(k) at each cycle k = 1, 2, . . . , such that
at the end of the k-th cycle

‖r(k)‖D = min
p∈Pm

p(0)=1

‖p(A)r(k−1)‖D.

For further details we refer to Essai [14].
The essential ingredient of weighted GMRES is the weighted Arnoldi algo-

rithm [14] that, after m iterations, generates basis vectors v1, . . . ,vm of the
Krylov space

Km(A, r) = span{r, Ar, . . . , Am−1r}.
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If one collects the Krylov basis vectors in a matrix Vm =
[
v1, . . . ,vm

]
∈

CN×m, one can write down an Arnoldi decomposition

AVm = Vm+1Hm = VmHm + vm+1hm+1,meTm, (1)

where Hm ∈ C(m+1)×m is the upper Hessenberg matrix

Hm =
[

Hm

hm+1,meTm

]
,

and em ∈ Rm is them-th canonical unit vector. The matrix Vm+1 = [Vm,vm+1]
is D-orthonormal, i.e., V Hm+1DVm+1 = Im+1, the identity matrix of dimension
m+ 1. The weighted Arnoldi algorithm requires more computation per itera-
tion than standard Arnoldi in the Euclidean inner product and, consequently,
one cycle of WGMRES(m) is computationally more expensive than one cycle
of GMRES(m). However, convergence may occur more quickly.

We would like to emphasize that weighting must not be confused with
preconditioning. From a (left) preconditioner P one expects that a Krylov
subspace method using the matrix P−1A for the solution of the preconditioned
linear system P−1Ax = P−1b converges faster, and typically this means that
the eigenvalues of P−1A are clustered. (Right preconditioning has an analogous
effect.) Weighting, on the other hand, does not change the Krylov space at all.
It merely affects the inner product that is used to extract an approximation
from the Krylov space built with the original matrix A.

Essai [14] considered the particular weight matrix

D =
1√

N‖r(k−1)‖2
diag

(
|r(k−1)

1 |, |r(k−1)
2 |, . . . , |r(k−1)

N |
)
, (2)

where the r(k−1)
j are the entries of the residual vector r(k−1), so that greater

emphasis is given to large components of the residual at each cycle. Note that
D = D(k) changes at each cycle, but to keep notation simple, we typically omit
the superindex k. The matrix D may be poorly conditioned if the diagonal
entries vary too much in magnitude. In such cases, adding a small multiple of
the identity will improve the conditioning of D.

For a number of test problems, WGMRES(m) with the weight matrix
(2) required fewer cycles and less CPU time than the standard GMRES(m)
method [14]. Application of WGMRES(m) to systems left-preconditioned by
ILU(0) [23] also resulted in a slight reduction in the number of cycles required
for convergence when compared with GMRES(m) [7]. However, the CPU time
for WGMRES(m) was greater, with the additional CPU time a consequence
of the computation of nonstandard inner products and norms. The weighted
GMRES method has also been used to solve shifted linear systems [21], and
systems with multiple right-hand sides [19]. We remark that Niu et al. [27]
showed that WGMRES(m) can be accelerated by augmenting the Krylov space
at cycle k with the ` most recent error approximations z(i), i = k−`, . . . , k−1,
where z(i) = x(i) − x(i−1) when i > 0 and 0 otherwise.
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Although intuitively it seems sensible to emphasize those entries of the
residual vector that are large in magnitude, the convergence behaviour of
WGMRES(m) is not well understood. We attempt to remedy this here by
examining the harmonic Ritz values associated with WGMRES(m). In view
of the limited understanding even of the convergence of full GMRES, it seems
unlikely at this stage that a simple and complete convergence theory for WGM-
RES can be developed. However, some insight can be gained by studying sev-
eral model problems. We also propose three alternative implementations of
the weighted Arnoldi algorithm and compare their cost and stability.

The outline of this paper is as follows. An analysis of the harmonic Ritz
values associated with GMRES(m) and WGMRES(m) is given in Section 2.
In Section 3 we describe Essai’s implementation of the weighted Arnoldi algo-
rithm and propose alternative implementations. We additionally discuss the
merits of each. Finally, in Section 4, the different implementations are tested on
a number of problems and compared with standard GMRES(m), GMRES(m)
with deflated restarting, and BICGSTAB.

2 Harmonic Ritz values and the convergence of weighted GMRES

In this section we try to shed some light on the convergence behaviour of
weighted GMRES and explain why this method may converge faster than
unweighted GMRES in some cases, or why weighting may have no effect
on the convergence at all. It should be emphasized that GMRES(m) and
WGMRES(m) after k cycles yield residuals r(k) from the same Krylov space
Kkm+1(A, r(0)) but the harmonic Ritz values that uniquely determine the
residual polynomials may exhibit considerably different behaviour. In other
words, the approximation spaces of both methods are the same but the extrac-
tions from these spaces may be different. This very property makes weighting
quite different from what is typically achieved by a (left) preconditioner P ,
which aims at improving the space Kkm+1(P−1A,P−1r(0)) for faster conver-
gence.

The convergence of GMRES (and its restarted and weighted variants) is
generally very difficult to analyse, if not impossible, as in theory any non-
increasing convergence curve can be obtained with any choice of eigenvalues
and Ritz values [3,17,11]. Additionally, restarted GMRES may exhibit any ad-
missible cycle-convergence behaviour, where the two admissible situations are
that the residuals decrease strictly monotonically at each cycle or that there
is complete stagnation, i.e., that there is some index s for which r(i) = r(s) for
all i > s [37]. Nevertheless, we still consider it instructive to make clear the
relations between the unweighted and weighted (harmonic) Ritz values in the
following. At the end of this section we will study three (unpreconditioned)
model problems. As no set of examples can be exhaustive, our primary aim
must be to illustrate and analyse some effects that may cause the difference
in the convergence of GMRES(m) and WGMRES(m) observed in practical
examples.
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Facts about harmonic Ritz values. Let us start by reviewing some well-known
facts about harmonic Ritz values, see [16,38,42]. First of all, the weighted
harmonic Ritz values θj with corresponding Ritz vectors uj satisfy

uj ∈ Km(A, r), (A−1uj − θjuj) ⊥D AKm(A, r), (3)

where u ⊥D V means that 〈u,v〉D = 0 for every v ∈ V. The condition
uj ∈ Km(A, r) is equivalent to uj = Vmzj , where Vm has as its columns
the D-orthonormal basis vectors of Km(A, r) in (1), and zj ∈ Cm. It follows
from (1) and (3) that(

Hm + |hm+1,m|2fmeTm
)
zj = θjzj ,

where fm = H−Hm em. It is also well known that the harmonic Ritz values
θ
(k)
1 , . . . , θ

(k)
m associated with cycle k are the zeros of the residual polynomial

p
(k)
m ∈ Pm, p(k)

m (0) = 1, which is uniquely determined by the condition

‖r(k)‖D(k) = ‖p(k)
m (A)p(k−1)

m (A) · · · p(1)
m (A)r(0)‖D(k)

= min
p∈Pm

p(0)=1

‖p(A)p(k−1)
m (A) · · · p(1)

m (A)r(0)‖D(k) .

If A is normal, then with p̃(k) := p
(k)
m p

(k−1)
m · · · p(1)

m we have

‖r(k)‖D(k) ≤ ‖r(0)‖D(k) max
λ∈Λ(A)

|p̃(k)(λ)|,

so that the convergence of (restarted) GMRES in the 2-norm can be under-
stood in terms of the uniform convergence of residual polynomials on the
discrete set of eigenvalues Λ(A).

Relationship between Ritz values with and without weighting. Relationships
between the Hessenberg matrices generated by weighted and unweighted GM-
RES were obtained by Essai [14], and we briefly recall them here.

Starting from a given vector, the Arnoldi method in the D-inner product
buildsD-orthogonal vectors that satisfy (1). With the same starting vector, the
Arnoldi method in the Euclidean inner product computes orthogonal vectors
v̂i such that

AV̂m = V̂m+1Ĥm, V̂m = [v̂1, . . . , v̂m], Ĥm =

[
Ĥm

ĥm+1,meTm

]
, (4)

where again Ĥm is an upper Hessenberg matrix. Additionally, the matrices
Vm and V̂m are linked by

Vm = V̂mSm, (5)

where Sm is upper triangular and is nonsingular in the absence of breakdown.
This matrix Sm allows the Hessenberg matrices Hm and Ĥm to be related
by [14, Corollary 1]

Ĥm = S−1
m HmSm +

ĥm+1,m

sm+1,m+1
sm+1e

T
m, (6)
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where sm+1 is the vector obtained from the first m elements of the last column
of Sm+1 and sm+1,m+1 is the (m + 1)-th element of this column. This shows
that the two Hessenberg matrices differ by a similarity transformation and a
rank-one modification.

Examining the effect of the rank-one difference on the harmonic Ritz val-
ues is difficult. An easier task is to compare the weighted and unweighted
Ritz values, θi and θ̂i, i = 1, . . . ,m, respectively. By applying the Bauer–Fike
theorem [20, Theorem 6.3.2] to (6), we obtain

min
j
|θj − θ̂i| ≤ κ(S−1

m Xm)
|ĥm+1,m|
|sm+1,m+1|

‖sm+1‖2, i = 1, . . . ,m,

where Xm is an eigenvector matrix of Hm and κ(S−1
m Xm) is the 2-norm con-

dition number of S−1
m Xm.

The influence of the weighting matrix D is not obvious from the above
inequality. However, we can obtain a (typically pessimistic) upper bound that
displays the effect of weighting more clearly. Using (5) and the D-orthogonality
of Vm we find that S−Hm S−1

m = V̂ Hm DV̂m, from which it follows that κ(S−1
m )2 =

κ(V̂ Hm DV̂m) ≤ κ(D). Thus,

min
j
|θj − θ̂i| ≤ κ(D)κ(Xm)

|ĥm+1,m|
|sm+1,m+1|

‖sm+1‖2. (7)

This shows that the difference between the weighted and unweighted Ritz
values depends on the nonnormality of Hm (through Xm) and the conditioning
of the change of basis matrix Sm. The latter term is bounded by the condition
number of the diagonal weight matrix D, which in the case of Essai’s weight-
ing (2) is given by the ratio of the largest and smallest values of r(k−1) in
magnitude. Consequently, we obtain a smaller bound (7) when the entries of
the residual vector have similar magnitudes.

The nearness of the Ritz values additionally depends on the quantities
ĥm+1,m, sm+1,m+1 and sm+1. Within GMRES, ĥm+1,m is small in magnitude
when the residual norm is small [32, Proposition 1], while the terms involving
entries of Sm+1 are small when the angle between vm+1 and v̂m+1 is small,
since then |sm+1,m+1| is large relative to the remaining entries in the (m+1)-th
column of Sm+1, i.e., the entries of sm+1.

Relationship between WGMRES and GMRES residuals. If the GMRES and
WGMRES residuals coincide at the (k − 1)-th cycle, then at the end of the
k-th cycle the residuals can differ by at most [28, Lemma 1]

1

σ1(D
1
2 V̂m)

‖r(k)
WGMRES‖D ≤ ‖r

(k)
GMRES‖2 ≤

1

σm(D
1
2 V̂m)

‖r(k)
WGMRES‖D,

where σ1 and σm represent the largest and smallest singular values, respec-
tively. Since V̂m is orthogonal, σm(D

1
2 ) ≤ σm(D

1
2 V̂m) ≤ σ1(D

1
2 V̂m) and

‖r(k)
GMRES‖2 ≤ ‖r

(k)
WGMRES‖2 ≤

√
κ(D)‖r(k)

GMRES‖2.
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From this we see that, given the same residual at the start of a cycle, weighted
GMRES cannot reduce the Euclidean norm of the residual by more than GM-
RES during the cycle. Thus, if WGMRES has an advantage over GMRES this
must be caused by a different starting residual.

Three model problems. We now compare the harmonic Ritz values generated
by GMRES(m) with the weighted harmonic Ritz values of WGMRES(m) for
three model problems. As well as Essai’s weight matrix (2) we consider an al-
ternative, proposed by Najafi and Zareamoghaddam [26], who were concerned
that as the magnitudes of the entries of the residual became smaller it would
be difficult to compute with (2); Drand is a diagonal matrix with random uni-
formly distributed entries in (0.5,1.5). Although the following three examples
have little practical relevance, we believe that they serve the purpose of giving
insight into how weighting can possibly improve the convergence of restarted
GMRES (Examples 1 and 3), or how weighting can have absolutely no effect
on the convergence (Example 2).

Example 1 (interval) We examine the harmonic Ritz values of a diagonal
matrix with diagonal entries (and, hence, eigenvalues) 1, 2, . . . , 100. The right-
hand side b is a vector of all ones, scaled to unit length. As one can see
in Figure 1 (a), it appears that for unweighted GMRES(m) with m = 5 the
harmonic Ritz values of every second cycle have m accumulation points, giving
asymptotically 2m accumulation points θ∗1 , . . . , θ

∗
2m in total. In this example

these accumulation points are approximately

3.348, 22.208, 51.510, 79.318, 96.908,
3.453, 20.616, 49.477, 79.784, 98.155.

It should be noted that a similar 2-cyclic behaviour has been observed and
analysed for the so-called optimum gradient method in the 1950’s [15,2] (this
method can be interpreted as restarted FOM), and in the context of matrix
function approximations in [1]. This restarted GMRES behaviour may also be
related to the asymptotic orthogonality of successive initial residuals r(k−1) and
r(k), proven for the case m = N−1 in [5, Theorem 2]. A detailed investigation
of this phenomenon is beyond the scope of this paper, but we expect that tools
similar to those used in the mentioned papers can be applied.

In Figure 1 (b) we show the level lines of the modulus of the nodal polyno-
mial q2m(z) =

∏2m
j=1(z − θ∗j ). These level lines are also known as lemniscates,

see also the discussion in [1]. One can read off from this plot that the level line
1014.535 is the smallest one containing Λ(A) in its interior, and the level line
1014.909 passes through the origin. By the normalization condition of residual
polynomials, the modulus of q2m(λ)/q2m(0) is at most 10−0.3740 ≈ 0.4227 for
all λ ∈ Λ(A). This residual polynomial is the result of two restart cycles, hence
the expected convergence rate of restarted unweighted GMRES(m) in this ex-
ample is approximately

√
0.4227 ≈ 0.6502. This rate is shown in Figure 1 (c)

as the black dashed line, and it coincides well with the observed linear conver-
gence of unweighted GMRES(m) (black curve with + markers).
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The convergence of the weighted GMRES(m) variants under consideration
appears much less regular. The harmonic Ritz values associated with Essai’s
weighting appear to cover the spectral interval of A more evenly, and this is
also indicated by the histogram in Figure 1 (d), which shows the distribution
of harmonic Ritz values over the spectral interval of A. This “randomization”
of interpolation nodes causes the method to converge faster than linearly. A
similar effect is achieved by random weighting with Drand. The fact that these
harmonic Ritz values are spread out over the spectral interval of A makes visu-
ally clear that weighting does not attempt to cluster the spectrum (and thereby
the harmonic Ritz values) as we might expect a preconditioner to do. We have
not attempted to plot the lemniscates associated with the harmonic Ritz values
produced by the weighted GMRES variants as, due to the observed irregular
behaviour, these lemniscates cannot be described by just a few accumulation
points. Therefore the evaluation of the residual polynomials at zero would not
give more information than the computed residual norms.

Example 2 (circle) Our second example is a diagonal matrix with N = 100
diagonal elements (eigenvalues) β · e2iπj/N + 1 on a circle of radius β = 0.9
centered at z = 1, j = 1, 2, . . . , N . The right-hand side b is a vector of all ones,
scaled to unit length, and the restart length is m = 5. As can be seen from
Figure 2 (a), the harmonic Ritz values “spiral” towards the point z = 1, being
almost evenly spaced on concentric circles. This effect appears for all types
of weighting under investigation, and the convergence shown in Figure 2 (b)
seems to be unaffected by whatever weighting method we use. To explain this
observation, assume that at some cycle the harmonic Ritz values are unit roots
of order m shifted and scaled to a circle of radius α < β centered at z = 1.
The corresponding nodal polynomial is qm(z) = (z − 1)m − αm. As can be
verified easily, the maximal modulus of qm on the circle of radius β centered
at z = 1 is attained at points “in the middle” of two neighboring eigenvalues,
for example, at the point z∗ = 1 + βeπi/N . Hence, the modulus of the residual
polynomial is bounded by∣∣∣∣qm(z∗)

qm(0)

∣∣∣∣ =
∣∣∣∣qm(1 + βeπi/N )

qm(0)

∣∣∣∣ =
∣∣∣∣βmeπim/N − αm(−1)m − αm

∣∣∣∣ ≈ βm
for sufficiently small α. This explains why we see convergence with rate β in
Figure 2 (b), indicated by the black dashed line, and weighting has essentially
no effect on the convergence here.

Example 3 (Jordan block) Our next example is an upper triangular Jor-
dan block J of size N = 100 with eigenvalue 1. The right-hand side b is a
vector of all ones, scaled to unit length. As one can see in Figure 3 (b), the
unweighted GMRES(5) method will stagnate except in the first cycle, where a
little progress is made. The corresponding harmonic Ritz values reappear at 10
points on a circle of radius one around the eigenvalue 1, with the real point
θ = 2 being counted twice due to symmetry, see Figure 3 (a). The harmonic
Ritz values associated with Essai’s weighted GMRES(5) method move closer
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Fig. 1: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red ◦), and WGMRES(5) with Drand (green dots) for a diagonal matrix
with equispaced eigenvalues on [1, 100]. The harmonic Ritz values are shown at
the end of each of 50 cycles. (b) Lemniscates associated with unweighted GM-
RES(5). (c) Relative 2-norm residuals for the considered GMRES(5) variants.
(d) Histogram indicating the distribution of harmonic Ritz values.

towards the eigenvalue 1 with each cycle. After 23 cycles, weighted GMRES(5)
has found the exact solution of Jx = b. The random weighting matrix Drand

leads to stagnation just as unweighted GMRES(5). As opposed to the previous
two examples, the harmonic Ritz values shown in Figure 3 (a) do not explain
the convergence curves in Figure 3 (b) for this (highly) nonnormal example.

To still give some insight into the different behaviour of unweighted GM-
RES and Essai’s weighted GMRES, we visualize in Figure 3 (c) and (d) the
entries of the residual vector after each cycle. The special structure of the Jor-
dan matrix results in large residual entries being shifted up the vector with each
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Fig. 2: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red ◦), and WGMRES(5) with Drand (green dots) for a 100× 100 matrix
with eigenvalues distributed on the shifted unit circle. The harmonic Ritz val-
ues are shown at the end of each of 50 cycles. (b) Relative 2-norm residuals for
the considered GMRES(5) variants. (All three convergence curves are visually
indistinguishable.)

cycle. With unweighted GMRES(5) the residual vector is initially largest in its
last entries. This phenomenon is fully described by Theorem 2.1 in [22], which
is stated in terms of the transpose of the Jordan block, JT , but is also valid for
J . Some intuition is gained by observing that if S =

[
0, e1, . . . , eN−1

]
is the

noncircular shift matrix, then Km(J, r) = Km(S, r) for any vector r. It follows
that the first two basis vectors, r and Sr differ only in the last component and
this affects the weight of the residual. More generally, any two basis vectors
Sjr and Sj+1r differ in the (N − j)-th component only. Thus the “support” of
nonzero entries in the residual vector at the end of the first cycle is in the last
five components of the residual. At later cycles, this “support” forms a band
that gets wider with each cycle, eventually polluting all entries of the residual
vector and causing the method to stagnate. WGMRES(5) with Essai’s weight-
ing initially has largest entries at the bottom of the residual vector, although
the other components also have some weight. Weighted GMRES then “cleans
up” the entries of the residual vector which were large in the previous cycle
because more weight is placed at those entries. Eventually, this WGMRES(5)
variant finds the exact solution in the 24-th cycle.

Note that this Jordan example also explains why the Krylov space and hence
the residual at the end of a cycle may depend sensitively on the initial resid-
ual for that cycle: instead of working with the matrix J and right-hand side
vector b we could as well run restarted weighted or unweighted GMRES with
A = XJX−1 and b̃ = Xb, where X = [x1, . . . ,xN ] is an arbitrary invert-
ible matrix. Since Km(A, b̃) = XKm(J, b), each column of Figure 3 (c) and
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Fig. 3: (a) Harmonic Ritz values for GMRES(5) (black +), WGMRES(5) with
(2) (red ◦), and WGMRES(5) with Drand (green dots) for a Jordan block with
eigenvalue 1. The harmonic Ritz values are shown at the end of each of the 25
cycles. The eigenvalue at 1 is plotted as an orange dot. (b) Relative 2-norm
residuals for the considered GMRES(5) variants. (The convergences curves of
WGMRES(5) with Drand and GMRES(5) are visually hard to distinguish.)
(c) Entries of the residual vectors after each cycle of unweighted GMRES(5).
(d) Entries of the residual vectors after each cycle of GMRES(5) with Essai’s
weighting.

(d) can now be interpreted as the components of a residual vector in the basis
of generalized eigenvectors of A. If a zero component rj of a residual vector
r = [r1, . . . , rN ]T is altered from 0 to ε > 0, for example by finite precision
arithmetic, then this can cause a change of an eigenvector component in Ar
(and the following Krylov subspace vectors) of order ε‖xj‖, which can be ar-
bitrarily large depending on ‖xj‖.
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We conclude this section by remarking on the observations of Cao and
Yu [7], who found little benefit in using WGMRES(m) on ILU-preconditioned
problems unless the restart length was short. In particular, they found that
although the number of cycles of WGMRES(m) was slightly lower than that
required by GMRES(m) the CPU time of WGMRES(m) was greater. It is
known that the application of ILU preconditioners often clusters eigenvalues.
In such cases weighting—the effect of which is typically to shift the harmonic
Ritz values from those obtained by GMRES(m)—appears to offer little ben-
efit. We have found that, for a number of linear systems right-preconditioned
by ILU(0), WGMRES(m) requires a number of cycles that is similar to, or
slightly greater than, that required by GMRES(m) (see Example 9). However,
WGMRES(m) may be of some benefit when the restart length is short or when
the spectrum of the preconditioned matrix is not nicely clustered.

3 The weighted Arnoldi algorithm

In this section we discuss four variants of the weighted Arnoldi algorithm for
constructing the D-orthonormal basis required by WGMRES. All variants are
mathematically equivalent, but Algorithms 2, 3 and 4 are, to our knowledge,
new implementations.

3.1 Variants of the algorithm

The most straightforward implementation of the weighted Arnoldi algorithm
replaces Euclidean inner products in a standard Arnoldi algorithm with D-
inner products (see, e.g., Essai [14], Sarkis and Szyld [33]). The j-th iteration
of such a weighted Arnoldi algorithm with modified Gram–Schmidt orthogo-
nalization (MGS) requires the computation of j D-inner products (see Algo-
rithm 1). If D is a diagonal matrix such as (2), the inner products in Algo-
rithm 1 can be efficiently implemented as (v ◦ d)Hu or vH(d ◦ u), where ◦
represents the Hadamard product and d the vector of diagonal elements of D.
For a general matrix D, each nonstandard inner product consists of a matrix-
vector product and an Euclidean inner product. Algorithm 2 shows that when
classical Gram–Schmidt orthogonalization (CGS) is used instead, these non-
standard inner products can be replaced by Euclidean inner products and only
two additional matrix-vector products with D in the whole cycle; these can
be computed as Hadamard products when D is diagonal. As a result, Algo-
rithm 2 may be much cheaper than Algorithm 1. In addition, the CGS method
is more easily parallelizable and may be faster in practice, as it can make use
of higher level BLAS routines. Even so, each step of weighted Arnoldi with
Algorithms 1 or 2 is more expensive than a step of the Arnoldi algorithm in
the Euclidean inner product because of the D-inner products and D-norms.
The number of multiplications by D is fixed for the CGS version but increases
as k increases in the MGS algorithm. Note that Algorithms 1 and 2 can be
used in combination with a preconditioner in a straightforward manner.
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Variants of the weighted Arnoldi algorithm:

Inputs: Matrix A ∈ CN×N , diagonal positive definite weight matrix D ∈
CN×N , vector r ∈ CN , number of Arnoldi iterations m
Outputs: D-orthonormal Arnoldi vectors {v1 . . . ,vm} of Km(A, r) and upper
Hessenberg matrix Hm = [hij ] ∈ C(m+1)×m

Algorithm 1: Explicit D-
inner products and MGS or-
thogonalization

v1 = r/‖r‖D
for k = 1, 2, . . . ,m do

w = Avk

for j = 1, 2, . . . , k do
hjk = v∗jDw

w = w − vjhjk
end
hk+1,k = ‖w‖D
if hk+1,k = 0 then

Stop
end
vk+1 = w/hk+1,k

end

Algorithm 2: Explicit D-
inner products and CGS or-
thogonalization

v1 = r/‖r‖D
for k = 1, 2, . . . ,m do

w = Avk
y = Dw
for j = 1, 2, . . . , k do

hjk = v∗jy

w = w − vjhjk
end
hk+1,k = ‖w‖D
if hk+1,k = 0 then

Stop
end
vk+1 = w/hk+1,k

end

Algorithm 3: Implicit D-
inner products and MGS or-
thogonalization

Ã = D
1
2AD−

1
2

w = D
1
2 r

ṽ1 = w/‖w‖2
for k = 1, 2, . . . ,m do

w = Ãṽk

for j = 1, 2, . . . , k do
hjk = ṽ∗jw

w = w − ṽjhjk
end
hk+1,k = ‖w‖2
if hk+1,k = 0 then

Stop
end
ṽk+1 = w/hk+1,k

end
[v1, . . . , vm] = D−

1
2 [ev1, . . . , evm]

Algorithm 4: Implicit D-
inner products and CGS or-
thogonalization

Ã = D
1
2AD−

1
2

w = D
1
2 r

ṽ1 = w/‖w‖2
for k = 1, 2, . . . ,m do

w = Ãṽk
y = w
for j = 1, 2, . . . , k do

hjk = ṽ∗jy

w = w − ṽjhjk
end
hk+1,k = ‖w‖2
if hk+1,k = 0 then

Stop
end
ṽk+1 = w/hk+1,k

end
[v1, . . . , vm] = D−

1
2 [ev1, . . . , evm]
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As an alternative to computing D-inner products at each step of the
weighted Arnoldi algorithm, we can perform the Arnoldi algorithm in the
Euclidean inner product on a row- and column-scaled matrix and a scaled
starting vector. More precisely, we can apply the Arnoldi algorithm in the Eu-
clidean inner product to the transformed matrix Ã = D

1
2AD−

1
2 and starting

vector r̃ = D
1
2 r. Doing so gives matrices Ṽm and H̃m that satisfy

ÃṼm = Ṽm+1H̃m, (8)

where H̃m is an upper Hessenberg matrix, Ṽ Hm Ṽm = Im, and the columns of
Ṽm form a basis of Km(Ã, r̃). Premultiplying both sides of (8) by D−

1
2 gives

the Arnoldi decomposition

AVm = Vm+1Hm,

where Vm = D−
1
2 Ṽm and Hm = H̃m. The columns of Vm are D-orthonormal

since V Hm DVm = Ṽ Hm Ṽm = Im. Moreover, since the columns of Ṽm span
Km(Ã, r̃) ≡ Km(D

1
2AD−

1
2 , D

1
2 r), the columns of Vm span Km(A, r).

The resulting algorithm with MGS orthogonalization is given in Algo-
rithm 3; Algorithm 4 is the CGS version. These algorithms differ from pre-
conditioned Arnoldi methods since the basis vectors are always scaled by the
matrix D−

1
2 . Again, the CGS version is more amenable to parallelization and

can utilize higher level BLAS, although the number of (Euclidean) inner prod-
ucts is identical to that required by the MGS version. We note that orthog-
onalizing a transformed matrix with respect to the Euclidean inner product,
to obtain a basis that is orthogonal with respect to a nonstandard inner prod-
uct, was considered in the context of rounding error analysis in [30]. Addi-
tionally, Heyouni and Essai [19] considered the use of matrix square roots
for enforcing D-orthogonality when solving systems with multiple right-hand
sides, although they still computed D-inner products at each iteration of their
weighted Arnoldi algorithm. It does not seem feasible to use Algorithms 3 and
4 in combination with a preconditioner.

In the remainder of this manuscript, we use Algorithms 1–4 to refer to both
the different weighted Arnoldi variants and the corresponding WGMRES(m)
methods. The meaning will be clear from the context. In all weighted GMRES
variants, the stopping criterion that is easiest to measure is the reduction in
‖r(k)‖D(k) . Throughout this manuscript, however, we measure the reduction
of the residual ‖r(k)‖2 in the Euclidean norm and stop the algorithms when
‖r(k)‖2/‖b‖2 has decreased below a prescribed tolerance. It is possible to use
‖r(k)‖D(k) and the elements of D(k) to bound the reduction of the residual in
the Euclidean norm (see [4]), but we do not consider this here.

3.2 Operation counts

In all four variants of the Arnoldi algorithm discussed here, the number of
matrix-vector products is m, and their computation requires 2m× Nnz arith-
metic operations, where Nnz is the number of nonzero elements in the matrix A
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or Ã, respectively. Furthermore, the successive orthogonalization of m Krylov
basis vectors requires m(m + 1)/2 inner products and vector updates of the
form w = w − vjhjk. One such vector update requires 2N arithmetic opera-
tions. Computing a single inner product requires 2N or 3N arithmetic opera-
tions in the unweighted or weighted case, respectively. The row and column1

scaling of the matrix A to form Ã and vector r to form r̃ in Algorithms 3 and
4 requires 3N +2×Nnz operations, counting the computation of a square root
or a division as a single arithmetic operation. Algorithms 3 and 4 also require
Nm multiplications to scale the basis vectors at the end of each cycle of the
weighted Arnoldi algorithm.

In Section 4 we will compare different variants of WGMRES(m) with
GMRES-DR(m, `) [25] on various numerical examples, but it easy to dis-
cuss the computational cost theoretically as well. In each cycle, the GMRES-
DR(m, `) method augments the Krylov basis computed by GMRES(m) with
the Schur vectors corresponding to the ` smallest harmonic Ritz values. These
Schur vectors, and the initial residual of the new cycle k, form the columns of
a matrix P`+1 ∈ C(m+1)×(`+1), from which the first ` + 1 basis vectors of the
new cycle are obtained via

V
(k)
`+1 = V

(k−1)
m+1 P`+1. (9)

The remaining columns of V (k)
`+m are then computed by the Arnoldi algorithm.

The dense matrix-matrix multiplication (9) requires 2N(m + 1)(` + 1) arith-
metic operations and so dominates the cost of augmenting the Krylov basis.
Depending on the restart length m and the number of Schur vectors `, the
cost of this matrix-vector product can make each cycle of GMRES-DR(m, `)
more expensive than a cycle of WGMRES(m).

We summarize the operation counts for a single cycle of Algorithms 1–4
and GMRES-DR in Table 1.

Table 1: Operation counts for a one cycle of Algorithms 1–4 and GMRES-DR.
Algorithm 1 2m× Nnz + 5

2Nm
2

Algorithm 2 2m× Nnz + 2Nm2 + 2Nm
Algorithm 3 2m× Nnz + 2Nm2 + 3N + 2× Nnz +Nm
Algorithm 4 2m× Nnz + 2Nm2 + 3N + 2× Nnz +Nm
GMRES-DR 2m× Nnz + 2Nm2 + 2Nm`

Although the performance of each algorithm is machine dependent, Algo-
rithms 3 and 4, for which the cost of the weighted inner product is independent

1 As pointed out by one of the referees, it is possible to eliminate the column scaling
in Algorithms 3 and 4 at the expense of storing m additional vectors. This is achieved by
computing each Arnoldi vector vk as soon as the corresponding scaled vector evk is available.

Specifically, assume that evk is available and compute vk = D−
1
2 evk. Then at each iteration of

Algorithm 3 and 4 the vector w can be formed as w = D−
1
2 AD

1
2 evk = D−

1
2 AD

1
2 D−

1
2 vk =

D−
1
2 Avk.
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of the restart length, can become more efficient than Algorithms 1 and 2 in
exact arithmetic when the restart length increases and the number of nonzeros
Nnz is sufficiently small. However, the numerical stability of these four variants
can be quite different, as discussed in the next subsection.

3.3 Numerical stability

In finite precision the quantities computed by Algorithms 1–4 typically differ.
In particular, the initial residual at each cycle, that defines both the Krylov
space and the weight matrix, may change. Since the choice of weight matrix
determines the way in which iterates are extracted from the Krylov space, any
change may alter significantly subsequent iterates and residuals.

Differences between the algorithms may also be caused by the orthogo-
nalization procedure. It is well known that classical Gram–Schmidt orthogo-
nalization in the Euclidean inner product is less stable than modified Gram–
Schmidt orthogonalization (see, for example, [29]). Our experience is that D-
orthogonalization, when D is given by (2), also becomes less stable by CGS
orthogonalization than by MGS orthogonalization, i.e., Algorithms 2 and 4
are less stable than Algorithms 1 and 3. These observations are supported by
bounds on

‖Im − V Hm DVm‖2 (10)

obtained by Rozložńık et al. [30]. The MGS bound depends on κ, the 2-norm
condition number of

[
D

1
2 r, D

1
2AVm

]
, while the CGS bound depends on κ2

and, consequently is much worse than the MGS bound when κ is large.
In WGMRES(m) this loss of orthogonality principally affects the small

least squares problem that must be solved. By the minimization property of
WGMRES(m), at the k-th cycle the residual vector satisfies

‖r(k)‖D = min
y∈Cm

∥∥Vm+1

(
Hmy − ‖r(k−1)‖De1

)∥∥
D

= min
y∈Cm

∥∥Hmy − ‖r(k−1)‖De1

∥∥
V H

m DVm
,

where, although all matrices change with each cycle, we have dropped the
superscript k for readability. If the columns of Vm are D-orthogonal, then
r(k) = r(k−1) + Vmym, where

ym = arg min
y∈Cm

∥∥Hmy − ‖r(k−1)‖De1

∥∥
2

and it is this small least squares problem that is solved in WGMRES(m) to
update the iterate and residual vector. However, if V Hm DVm≈Im, then r̂(k) =
r(k−1) + Vmym, with

ym = arg min
y∈Cm

∥∥Hmy − ‖r(k−1)‖De1

∥∥
2
,

is only an approximation of r(k).
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However, for any r(k) ∈ Cm,

σmin

(
D

1
2Vm

)
‖r(k)‖2 ≤ ‖r(k)‖V H

m DVm
≤ σmax

(
D

1
2Vm

)
‖r(k)‖2,

where σmin

(
D

1
2Vm

)
and σmax

(
D

1
2Vm

)
are the smallest and largest singular

values of D
1
2Vm. Assuming that at some cycle k the initial residuals agree,

r(k−1) = r̂(k−1), this shows that r(k) and r̂(k) can only differ significantly
when the singular values of D

1
2Vm start to differ from 1. In practice, the loss

of orthogonality in D
1
2Vm over a single cycle is typically modest, in particular

when m is small, but the differences in the residuals r(k) and r̂(k) may build
up over several cycles, leading to different convergence histories.

A detailed analysis of the effect of loss of orthogonality on WGMRES(m)
convergence appears complicated due to the dynamic nature of the weight-
ing and is beyond the scope of this manuscript. In most examples we have
tested, the orthogonalization procedure did not seem to have a great impact
on the convergence of WGMRES(m), and the convergence was not significantly
delayed by loss of orthogonality, similarly to what is known about GMRES
in the Euclidean inner product (see, for example, Simoncini and Szyld [34],
Greenbaum et al. [18] and Drkošová et al. [10] for examples and analysis of the
convergence of GMRES in finite precision). To give a (rare) example where the
orthogonalization procedure indeed seems to have a pronounced effect on the
convergence we apply WGMRES(70) to the matrix fs 541 2 of size N = 541,
which is available from the University of Florida Sparse Matrix Collection [9].
We choose b such that the solution is x = [1, 1, . . . , 1]T /

√
N , and use the ini-

tial guess x(0) = 0. Figure 4 shows the relative residuals ‖r(k)‖2/‖b‖2 at the
end of each cycle, and the loss of D-orthogonality of Vm in (1) at the end of
each weighted Arnoldi run, measured by (10). We note that the difference be-
tween σmin

(
D

1
2Vm

)
and 1, and between σmax

(
D

1
2Vm

)
and 1, is approximately

equal to (10) for this problem.
Figure 4 (a) shows the residual history and loss of orthogonality when

WGMRES(m) with explicitly computed nonstandard inner products is ap-
plied using Algorithm 1 (that uses MGS orthogonalization) and Algorithm 2
(that uses CGS orthogonalization). Similarly, Figure 4 (b) compares the con-
vergence and loss of orthogonality of WGMRES(m) computed with the row-
and column-scaled linear system using MGS orthogonalization (Algorithm 3)
and CGS orthogonalization (Algorithm 4). We see that regardless of whether
inner products are computed explicitly or implicitly, the MGS basis vectors
are much closer to orthogonal than the CGS basis vectors.

In Figure 4 (a) we observe that when the inner products are computed
directly the MGS version (Algorithm 1) converges significantly faster than the
CGS variant (Algorithm 2). Indeed, the CGS version stagnates, although this
stagnation is not associated with the complete loss of orthogonality of the basis
vectors. Instead, it may be attributable to finite precision errors in the weight
matrix (and, therefore, residual vector), introduced by the different orthogo-
nalization procedures. Regardless of the cause, the stagnation highlights the
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Fig. 4: Relative residuals at the end of each cycle of WGMRES(70) using
(a) Algorithms 1 and 2 and (b) Algorithms 3 and 4 with MGS (solid red
with ◦) and CGS (solid blue with �) D-orthogonalization. Also plotted is
‖Im−V Hm DVm‖2 at the end of each weighted Arnoldi cycle with MGS (dashed
red) and CGS (dotted blue) orthogonalization.

large difference in convergence that rounding errors in the orthogonalization
procedure can have on the computed WGMRES solution.

In contrast to Algorithms 1 and 2, it is clear from Figure 4 (b) that when
the inner products are computed implicitly the MGS version (Algorithm 3)
converges more slowly than the CGS version (Algorithm 4). This again shows
that the implementation of the orthogonalization procedure can have a bearing
on the convergence of weighted GMRES.

For this problem, it appears that neither orthogonalization procedure is
definitively better than the other; instead performance is affected by rounding
errors caused by the orthogonalization procedure in combination with the inner
product computation (i.e., whether nonstandard inner products are computed
explicitly, as in Algorithms 1 and 2, or implicitly, as in Algorithms 3 and 4).

In the following section we compare the numerical stability of MGS and
CGS orthogonalization for a number of examples. We find that the perfor-
mance of each depends on the problem and that neither is a clear winner.

4 Numerical experiments

In this section we compare different variants of WGMRES(m) with each other
and with more established Krylov subspace methods, such as GMRES with
deflated restarting (GMRES-DR) and BICGSTAB. The first five examples
are those used by Essai [14] and are available from the University of Florida
Sparse Matrix Collection [9]. For these examples we compare the four vari-
ants of WGMRES(m) in Algorithms 1–4 with each other and with GMRES-
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m GMRES-DR(m, 5) GMRES-DR(m, 10) Alg 1 Alg 2 Alg 3 Alg 4
40 20(23) 18(20) 21(35) 21(35) 21(35) 21(35)
50 14(44) 14(5) 15(32) 15(32) 15(32) 15(32)
60 11(49) 11(26) 12(43) 12(43) 12(43) 12(43)
70 10(36) 10(15) 11(12) 11(12) 11(12) 11(12)
80 9(12) 8(69) 10(5) 10(3) 10(5) 10(5)

Table 2: Number of cycles, with the number of iterations in the last cycle given in paren-
theses, for add20.

DR(m, `). The last example compares two WGMRES(m) variants, unweighted
GMRES(m), GMRES-DR(m, `) and BICGSTAB over a large set of right-
preconditioned test problems that is described below.

In all examples we take x(0) = 0 as the initial guess. A method is stopped
when the relative residual ‖r(k)

j ‖2/‖b‖2 has decreased to below 10−10. If this
tolerance is not reached after 100 cycles we terminate the method, which we
denote by ‘—’. Iteration counts are given in the form itout(itin), where itout

is the number of cycles and itin is the number of steps in the last cycle. In
our notation GMRES-DR(m, `) augments a Krylov subspace of dimension m
with ` approximate Schur vectors. This makes sure that all GMRES variants
require exactly m matrix-vector products with A in a cycle.

Example 4 (add20) Our first test problem is add20, a matrix from a circuit
simulation problem of dimension 2 395 with 13 151 nonzeros. The right-hand
side b is a random vector. Table 2 shows the number of cycles required by
GMRES-DR(m, `) with ` = 5, 10 as well as WGMRES(m) with Algorithms 1–
4. We first observe that GMRES-DR requires slightly fewer cycles than WGM-
RES for all choices of m (m = 40, 50, . . . , 80). Comparing the WGMRES
variants, we find that for this example all algorithms require the same number
of cycles, except for m = 80 for which Algorithm 2 converges slightly faster.
Overall, however, it appears that for this example all methods behave stably.

Example 5 (bfwa782) The matrix bfwa782 comes from an electromagnetics
problem and is of dimension 782 with 7 514 nonzeros. Again b is a random
vector. The number of cycles for the different methods are given in Table 3.
We see that the difference between GMRES-DR and WGMRES is more pro-
nounced, with the former requiring significantly fewer cycles for convergence.
When m = 40, Algorithm 1 (with MGS orthogonalization) requires 4 fewer cy-
cles than the other WGMRES variants. As the restart length increases, how-
ever, the different WGMRES implementations behave similarly and require
identical numbers of cycles to converge.

Example 6 (fs 541 2) Our next example fs 541 2 has dimension 541 and
4 282 nonzeros, with b a random vector. Table 4 again shows that GMRES-
DR converges faster than WGMRES, with the latter failing to converge after
100 cycles when m = 40, 80. For restart lengths m = 50, 60, Algorithm 2
(with CGS orthogonalization) requires fewest matrix-vector products among
the WGMRES variants. However, when m = 70 convergence for the same
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m GMRES-DR(m, 5) GMRES-DR(m, 10) Alg 1 Alg 2 Alg 3 Alg 4
40 17(13) 9(2) 65(34) 69(20) 69(24) 69(24)
50 11(34) 7(23) 34(26) 34(26) 34(27) 34(27)
60 8(33) 6(18) 28(58) 28(58) 28(58) 28(58)
70 7(42) 5(36) 22(5) 22(5) 22(5) 22(5)
80 6(46) 4(70) 14(56) 14(56) 14(56) 14(56)

Table 3: Number of cycles, with the number of iterations in the last cycle given in paren-
theses, for bfwa782.

m GMRES-DR(m, 5) GMRES-DR(m, 10) Alg 1 Alg 2 Alg 3 Alg 4
40 35(27) 29(21) — — — —
50 22(18) 20(49) 23(47) 23(33) 23(42) 23(42)
60 18(49) 16(53) 25(60) 24(24) 25(60) 25(60)
70 13(48) 12(62) 21(65) 37(60) 22(9) 22(9)
80 10(78) 9(76) — — — —

Table 4: Number of cycles, with the number of iterations in the last cycle given in paren-
theses, for fs 541 2.

m GMRES-DR(m, 5) GMRES-DR(m, 10) Alg 1 Alg 2 Alg 3 Alg 4
40 60(40) 48(32) 50(24) 52(5) 54(29) 54(29)
50 42(27) 33(41) 35(33) 36(44) 33(2) 33(2)
60 33(9) 25(54) 28(31) 28(22) 27(60) 27(60)
70 25(51) 21(50) 26(26) 24(34) 26(37) 26(37)
80 20(51) 18(2) 20(49) 21(66) 20(9) 20(9)

Table 5: Number of cycles, with the number of iterations in the last cycle given in paren-
theses, for memplus.

algorithm is significantly delayed (see also Figure 4). Although CGS orthogo-
nalization can give slightly faster convergence, it does not appear to be as stable
as MGS orthogonalization.

Example 7 (memplus) The matrix memplus is another circuit simulation prob-
lem, having dimension 17 758 and 99 147 nonzeros. The vector b is chosen at
random. We see from Table 5 that for restart lengths smaller than m = 80,
WGMRES(m) converges in fewer cycles than GMRES-DR(m, 5). GMRES-
DR(m, 10) outperforms WGMRES, except when Algorithms 3 and 4 are ap-
plied with m = 50.

Considering now the different WGMRES implementations, we see that
there is some variation between them. For this problem WGMRES with Al-
gorithms 3 and 4 require fewer cycles than WGMRES with Algorithms 1 or 2
when m = 50, 60, 80 and more when m = 40, 70.

Example 8 (orsirr 1) A matrix from oil reservoir simulation, orsirr 1 has
dimension 1 030 and 6 858 nonzeros. We choose b to be a random vector. This
is the one example for which WGMRES outperforms GMRES-DR(m,10) (see
Table 6). For smaller restart lengths, WGMRES(m) also converges faster than
GMRES-DR(m,5).
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m GMRES-DR(m, 5) GMRES-DR(m, 10) Alg 1 Alg 2 Alg 3 Alg 4
40 70(9) — 61(35) 61(21) 58(2) 69(37)
50 55(13) — 46(46) 45(32) 48(11) 48(41)
60 34(55) — 35(41) 34(42) 34(32) 35(30)
70 25(12) — 28(39) 27(54) 28(18) 27(41)
80 — — 22(32) 24(31) 23(8) 24(13)

Table 6: Number of cycles, with the number of iterations in the last cycle given in paren-
theses, for orsirr 1.

Different implementations of WGMRES again require different numbers of
cycles for convergence, particularly for smaller restart lengths. The best per-
forming WGMRES(m) variant changes with the restart length, so that overall
none outperforms the others consistently. We note in particular that when
m = 40 Algorithm 3 converges fastest while Algorithm 4, which uses CGS or-
thogonalization, requires 11 more cycles, again highlighting the impact of the
orthogonalization method on convergence.

Example 9 (performance profile) In order to get a general idea of whether
WGMRES is a practical method when preconditioners are used, we compare
GMRES, WGMRES with modified and classical Gram–Schmidt orthogonal-
ization (see Algorithms 1 and 2), as well as GMRES-DR and BICGSTAB
on a large number of problems from the University of Florida Sparse Matrix
Collection. In contrast to Cao and Yu [7] we use right preconditioning, which
minimizes the norm of the residual vector, rather than left preconditioning,
which minimizes the norm of the preconditioned residual. The reason is that
typically the residual vector is of greater interest than the preconditioned resid-
ual.

Our method of comparison is as follows. We first retrieve all nonsymmetric
matrices A of sizes between 104 and 106 having no more than 15 nonzero ele-
ments per row on average. There are 220 such matrices. We then apply sparse
reverse Cuthill–McKee reordering as implemented in Matlab’s symrcm. Next
we scale the columns of A to have unit Euclidean norm, followed by a scaling
of the rows of A to unit norm. Our aim is to compute an ILU preconditioner
with thresholding and pivoting via Matlab’s ilu. For stability reasons we com-
pute an ILU factorization of A+σI, where σ = 10−12 if all diagonal elements
of A are zero, or σ = 10−12 max{|aii|} if some but not all diagonal elements
aii of A zero, or σ = 0 otherwise. This procedure follows some recommenda-
tions given in [8]. We successively use a drop tolerance of 10−3, 10−4, . . . , 10−8,
and stop when the U factor of the factorization has a condition number below
1015, so that it can be assumed numerically nonsingular. If this condition is
not satisfiable with a drop tolerance of 10−8, then the matrix A is skipped. The
right-hand side vector b either comes with the matrix from the collection, or
is generated randomly.

We now run the Krylov methods GMRES(10), the two WGMRES(10)
variants, GMRES-DR(10,5), BICGSTAB on the test matrices. A method is
marked as failed if more than 50 restart cycles or 250 BICGSTAB iterations
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are required to obtain a relative residual norm of 10−8. Note that in our nota-
tion GMRES-DR(10,5) requires 10 matrix-vector products (MVP) per cycle,
exactly like GMRES(10) and WGMRES(10), and BICGSTAB requires 2 MVP
per iteration, so that the maximal number of MVP is 500 for all methods. If
all methods fail on a matrix, then this matrix is excluded from the test. Since
the collection also contains many singular matrices, related to eigenvalue or
least-squares problems, only 109 out of the 220 retrieved matrices are finally
included in our test.

The performance profile in Figure 5 allows us to compare the number of
MVP needed for each method to converge across all test problems. More specif-
ically, if for each linear system the performance ratio measures the number of
MVP for the k-th method to converge to the number of MVP for the best per-
forming method to converge, then the function fk(α) measures the fraction of
problems in the test set for which the performance ratio of method k is less
than or equal to α. Thus, α = 1 shows the fraction of problems for which
the k-th method requires the fewest MVP of all methods. Also, limα→∞ fk(α)
indicates the number of failures.

It is somewhat disappointing that WGMRES(10) is generally outperformed
by GMRES(10). At least we observe that the CGS version of WGMRES does
not perform considerably worse than the MGS version and, considering the
potential computational savings outlined in Section 3, it seems that one should
generally favour the CGS version when using WGMRES. We note that GM-
RES(10) and both variants of WGMRES(10) fail on at least 16 matrices from
our test set; this failure rate is considerably higher than for GMRES-DR and
BICGSTAB. Overall, GMRES-DR(10,5) requires fewest MVP in general, and
thereby outperforms all other methods under consideration. It is, however, less
robust than BICGSTAB, the latter of which fails for 3 matrices only but typi-
cally requires the most MVP. To summarize, we believe that WGMRES should
not be used in combination with preconditioners, although we are aware that
for some examples it may perform satisfactorily.

5 Conclusions

The weighted GMRES variant presented by Essai has recently gained interest
for solving linear systems. This method is justified by a heuristic that empha-
sizes large residual components via a weighted inner product. With the help
of simple model problems we have given insight into how weighting affects the
distribution of harmonic Ritz values, or how it affects entries in the residual
vector after each cycle. For example, in one case where the harmonic Ritz
values appeared in cyclic pairs on the spectral interval of a matrix, weighting
had the effect of “randomizing” these harmonic Ritz values and thereby cov-
ering the spectral interval more evenly. This led to an improved convergence
of WGMRES compared to the linear convergence observed for GMRES on the
same example.
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Fig. 5: Performance profile of matrix vector products required by various
Krylov methods applied to 109 matrices from the University of Florida Sparse
Matrix Collection with an ILU preconditioner.

We presented four different implementations of weighted GMRES and com-
pared their numerical cost and stability properties. Our numerical results sug-
gest that these variants generally converge similarly to Essai’s original imple-
mentation, but may require fewer arithmetic operations. However, for at least
one matrix and restart length each of Algorithms 1–4 outperforms the oth-
ers, so that no method is definitively better. Occasionally these differences are
significant, indicating the presence of instabilities. Our investigations suggest
that these are not due to a rapid loss of orthogonality. However, even a small
loss of orthogonality can alter the residual obtained, so that differences build
up over several cycles. The problem is exacerbated by the sensitivity of the
Krylov subspace itself to perturbations in the residual. We stress, however,
that these difficulties with finite precision and loss of orthgonality are inher-
ent to the orthogonalization procedure and not weighting itself, and hence are
equally relevant to unweighted (restarted) GMRES.

When applied to some unpreconditioned problems, WGMRES(m) can out-
perform GMRES(m). A test run with a large number of matrices from the
University of Florida Sparse Matrix Collection revealed, similarly to observa-
tions made in [7], that weighted GMRES is typically outperformed by GMRES
if a preconditioner is used. In addition, we have compared these methods with
other state-of-the-art Krylov methods like GMRES-DR (GMRES with deflated
restarting) and BICGSTAB. GMRES-DR required fewest matrix-vector prod-
ucts, whereas BICGSTAB appeared to be the most robust method in our test,
at the cost of requiring the most matrix-vector products. One advantage of
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WGMRES(m) over GMRES-DR(m, `) is that there is no parameter ` to be
chosen.

We find that, although weighted GMRES may outperform unweighted GM-
RES for some examples, in general this method is not competitive with other
Krylov subspace methods like BICGSTAB or deflated GMRES, in particu-
lar when preconditioners are used. If, for whatever reason, weighted GMRES
needs to be used with a moderate restart length, then the CGS version (Al-
gorithm 2) presented in Section 3 is recommended.
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3. Arioli, M., Pták, V., Strakoš, Z.: Krylov sequences of maximal length and convergence
of GMRES. BIT 38, 636–643 (1998)

4. Ashby, S.F., Holst, M.J., Manteuffel, T.A., Saylor, P.E.: The role of the inner product
in stopping criteria for conjugate gradient iterations. BIT 41, 26–52 (2001)

5. Baker, A.H., Jessup, E.R., Manteuffel, T.: A technique for accelerating the convergence
of restarted GMRES. SIAM J. Matrix Anal. Appl. 26, 962–984 (2005)

6. Brown, P.: A theoretical comparison of the Arnoldi and GMRES algorithms. SIAM
J. Sci. Stat. Comput. 12, 58–78 (1991)

7. Cao, Z.H., Yu, X.Y.: A note on weighted FOM and GMRES for solving nonsymmetric
linear systems. Appl. Math. Comput. 151, 719–727 (2004)

8. Chow, E., Saad, Y.: Experimental study of ILU preconditioners for indefininte matrices.
J. Comput. Appl. Math. 86, 387–414 (1997)

9. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38, 1:1–1:25 (2011)
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