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1 Introduction

Since version 2.7 the RKToolbox provides two new utility functions util bary2rkfun

and util aaa for working with rational functions in barycentric representation

r(z) =

m∑
j=0

wjfj
z − zj

m∑
j=0

wj

z − zj

.

The function util bary2rkfun takes as inputs the interpolation points (vector z), func-
tion values (vector f), and barycentric weights (vector w) of the interpolant. It then
outputs the same rational function converted into RKFUN format. See [2] for details
on this conversion. The util aaa is a wrapper for the AAA algorithm developed in [3],
which appears to be a very robust method for scalar rational approximation on arbi-
trary discrete point sets. The only differences of util aaa compared to the original AAA
implementation in [3] are that

� the output is returned in RKFUN or RKFUNM format, using the conversion de-
scribed in [2],

� it also works for a matrix-valued function F by using a scalar surrogate function
f(z) = uTF (z)v for the AAA sampling.

2 A simple scalar example

In an example taken from [3, page 27] the AAA algorithm is used to compute a rational
approximant r(z) to the Riemann zeta function ζ(z) on the interval [4−40i, 4+40i]. Here
we do the same, using the util aaa wrapper:
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zeta = @(z) sum(bsxfun(@power ,(1e5:-1:1) ',-z));

Z = linspace (4-40i, 4+40i);

rat = util_aaa(zeta ,Z);

The computed rational approximant rat is of degree 29. As it is an object of RKFUN
type we can, for example, evaluate it for matrix arguments. Following [2], we compute
r(A)b for a shifted skew-symmetric matrix A having eigenvalues in [4 − 40i; 4 + 40i] and
a vector b. This evaluation uses the efficient rerunning algorithm described in [1, Section
5.1] and requires no diagonalization of A. We then compute and display the relative error
of the approximant:

A = 10* gallery('tridiag ' ,10); S = 4* speye (10);

A = [ S , A ; -A , S ]; b = ones (20,1);

f = rat(A, b); % approximates zeta(A)*b

[V,D] = eig(full(A)); ex = V*(zeta(diag(D).').'.*(V\b));

norm(ex - f)/norm(ex)

ans =

8.1412e-14

3 Solving a nonlinear eigenproblem

While the AAA algorithm is designed for scalar-valued functions f , the computed inter-
polants can easily be modified to interpolate matrix-valued functions F . The util aaa

implements a surrogate approximation approach where the matrix-valued function F is
first reduced to f(z) = uTF (z)v with random unit vectors and then sampled via AAA. The
scalar rational interpolant r is then recast as a matrix-valued interpolant by replacing the
function values fj in the barycentric formula with matrices F (zj). We demonstrate this
procedure with the help of a simple nonlinear eigenvalue problem (NEP) F (z) = A−z1/2I,
with the matrix A defined above. We choose a disk of radius 50 centered at 10 + 50i as
the target set, inside of which there are three eigenvalues of F :

F = @(z) A - sqrt(z)*speye (20);

evs = eig(full(A)).^2; % exact eigenvalues of F

figure (1), plot(evs ,'ro'); hold on; shg

Z = 10 + 50i + 50*exp(1i*linspace (0,2*pi ,100));

plot(Z,'k:'); axis equal; axis ([ -100 ,60 , -60 ,100])

legend('exact evs','target set','Location ','SouthWest ')
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The boundary circle is discretized by 100 equispaced points, providing the set Z of candi-
date points. We can now run util aaa to sample this function, say with an error tolerance
of 10−12.

ratm = util_aaa(F,Z,1e-12)

ratm =

RKFUNM object of size 20-by -20 and type (14, 14).

Complex sparse coefficient matrices of size 20-by -20.

Complex -valued Hessenberg pencil (H, K) of size 15-by

-14.

The output is an object of class RKFUNM, a 20 × 20 matrix-valued rational function of
degree 14. Note that the error tolerance we used when calling util aaa corresponds to the
approximation error for the scalar surrogate problem, not necessarily for the matrix-valued
NEP. Anyway, let’s plot the poles of ratm, which appear to align on a (nonstandard)
branch cut for the square root:

plot(poles(ratm),'bs')

legend('exact evs','target set','poles ' ,...

'Location ','SouthWest ')
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The solution of the rational NEP is now straightforward: We simply need to linearize the
RKFUNM and compute the eigenvalues of the resulting matrix pencil:

AB = linearize(ratm);

[A,B] = AB.get_matrices ();

evs = eig(full(A),full(B));

plot(evs ,'m+')

legend('exact evs','target set','poles ','eigenvalues ' ,...

'Location ','SouthWest ')
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Note how the eigenvalues of the linearization are very good approximations to the eigen-
values of F inside the target set. Of course, solving the linearized problem using eig as
above is only viable for small problems. However, this is not a problem as the pencil
structure AB can also be used as an input to the rat krylov method. The following
lines compute Ritz approximations to the eigenvalues of the linearization from a rational
Krylov space of dimension 15, having all shifts identically placed at the center of the
target disk:

shifts = repmat (10 + 50i, 1, 15);

[m,n] = type(ratm);

dimlin = m*size(ratm ,1); % dimension of linearization

v = randn(dimlin , 1); % starting vector of Krylov space

shifts = repmat (10 + 50i, 1, 14);

[V, K, H] = rat_krylov(AB, v, shifts);

[X, D] = eig(H(1:end -1, :), K(1:end -1, :));

ritzval = diag(D);

plot(ritzval , 'g*')

legend('exact evs','target set','poles ','eigenvalues ' ,...

'Ritz values ','Location ','SouthWest ')

5



-100 -50 0 50
-60

-40

-20

0

20

40

60

80

100

exact evs
target set
poles
eigenvalues
Ritz values

As one can see, the two Ritz values close to the center of the disk are already quite close
to the desired eigenvalues. The accuracy can be increased by computing Ritz values of
order higher than 15.
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[2] S. Elsworth and S. Güttel. Conversions between barycentric, RKFUN, and Newton
representations of rational interpolants, Linear Algebra Appl., 576:246–257, 2019.

[3] Y. Nakatsukasa, O. Sete, and L. N. Trefethen. The AAA algorithm for rational ap-
proximation, SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018.

6


	Introduction
	A simple scalar example
	Solving a nonlinear eigenproblem
	References

