Graph label propagation via RKFIT

Stefan Gittel

July 2020

Contents

[1__Introductionl 1
2 Data loading] 1
|3 Nearest neighbor adjacency| 2
[4 Training the classifiers| 3
15 Performance evaluationl 6
6 References| 7

1 Introduction

Label propagation refers to the problem of diffusing node labels on a graph using its
connectivity information. If two nodes are connected by an edge, they are considered to
be more likely to share the same label. Label propagation can be used to automatically
label graph nodes after only a subset of nodes has been labeled manually. Here we consider
an example from [2], where a similarity graph of images in the popular MNIST collection
is constructed using a nearest neighbor search. Each image in that collection depicts a
hand-written digit among 0,1,...,9. A fraction of these images is prelabeled and the aim
then is to construct ten one-against-all classifiers to recognize the other other digits. In
[2], the classifiers are constructed using degree-15 polynomials of the adjacency matrix (in
that paper, the degree is referred to as the number of "taps’ L). Our aim is to demonstrate
that RKFIT [1] is able to significantly compress these polynomial filters into lower-degree
rational functions without sacrificing the classification performance.

2 Data loading

We start by loading the MNIST data set. This is available at several locations on the inter-
net and we have used http://yann.lecun.com/exdb/mnist/, retaining the 60,000 training
images with their respective labels for this experiment.

if exist('mnist.mat') “= 2
disp('File mnist.mat not found. Data can be downloaded from:')

http://yann.lecun.com/exdb/mnist/

disp('http://yann.lecun.com/exdb/mnist/"')
return

end

load mnist

images = training.images;

labels = training.labels;

In order to shorten the runtime for this experiment, we will choose a small random
subset of keep images, and assume that n_known of these images have known labels. The
polynomial classifier is then trained on an even smaller number of n_train images.

keep = 1000; % total number of images to work with
n_known = 150; % number of images with known labels
n_train = round(n_known/3); 7 training set

ind = sort(randperm(length(labels) ,keep));

images = images(:,:,ind); labels = labels(ind);

Below we visualize the first few of the selected images with their labels.

figure
for i = 1:2
for j = 1:5
ind = (i-1)*5+j;
subplot (2,5, 1ind)
imagesc(images (:,:,ind))
title(['label = ' num2str (labels(ind))])
hold on
end
end

colormap gray; shg

label = 8 label =0 label =2 label =0 label =0

5 15 25 5 15 25 5 15 25 5 15 25 5 15 25
label =0 label =0 label =0 label =5 label =5

5 15 25 5 15 25 5 15 25 5 15 25 5 15 25

3 Nearest neighbor adjacency

Now we construct the nearest neighbor graph having a number of keep nodes, one for
each image, by connecting nodes (=images) by edges when their Frobenius norm distance
is relatively small.

k = 7; AA = sparse(keep,keep);
for i = 1:keep
Dif = repmat(images(:,:,i),1,1,keep) - images;
for j = 1l:keep
dif (j) = norm(Dif(:,:,j), 'fro');
end
[“,ind] = sort(dif); ind = ind (2:1+k);
AA(i,ind) = 1;
end
A = AA' + AA; Y, symmetric adjacency matrix

4 'Training the classifiers

We now follow the approach in [2] and construct, for each digit d = 0,1,...,9, a poly-
nomial classifier of degree L = 15. These classifiers are obtained by solving least squares
problems

IDp(A) e — 1]z,

p[d] = argmin,cp,

where Dl is a diagonal matrix with diagonal entries —1 (image does not depict digit d),
0 (image is not labeled), or +1 (image depicts digit d). The vector t? contains —1,0,1
to represent the labels of the training data, and 1 is the vector of all ones. The ten
polynomial classifiers are used to label all images that haven’t been prelabeled simply
by evaluating the polynomials as pl(A)kl¥, where now k¥ is a vector representing the
known image labels. In a similar manner, we can use RKFIT to reapproximate these degree
L = 15 polynomials with degree-2 rational functions, rl@(A)k@ ~ pld(A)k!l4, and then
use these for the labeling instead. The below code implements all that and measures the
classification performance of both the polynomial classifiers and the compressed RKFIT
classifiers. In order to obtain measurements of some statistical robustness, we run the
randomized labeling and classification several times and then average. (Note that the
code is not optimized for performance and we only display its text output for the first
run.)

runs = 5; % training runs for averaging of performance
Corr = []; Corr2 = []; Corrbin = []; Corrbin2 = []; Misfit = [];
for run = 1:runs
disp(['RUN NUMBER ' num2str (run)])
known = sort(randperm(keep,n_known));
train = known(sort(randperm(n_known ,n_train)));
Digit = []; Digit2 = [1;
for digit = 0:9
lab = labels; lab(lab==digit) = -1; lab(lab™=-1) = 1;
d = zeros(keep,1); d(known) = lab(known);
D = spdiags(d,0,keep,keep);
e = zeros (keep,1); e(train) = lab(train);

E = spdiags(e,0,keep,keep);

o ones (keep,1);

% construct classifier for training vector
v = e; % training vector

Basis = [];

L = 15; % degree of polynomial (taps)

for j = 0:L

Basis = [Basis , Dx*v];
v = Axv; % Arnoldi procedure would be more stable!
end
h = pinv(Basis)*o; % get polynomial coeffs
% apply classifier to vector of known labels
Fd = 0xd;
v = d; % known label vector
M = eye(keep); F = 0xM;

for j = 0:L
Fd = Fd + h(j+1)*v; v = Axv;
F =F + h(j+1)*M; M = AxM;
end

% degree-2 RKFIT recompression of the filter

param = struct();

param.deflation_tol = 0; param.real = 1;

param.maxit = 10; param.waitbar = O0;

param.tol = 0; param.return = 'best';

[xi, ratfun, misfit, out] = rkfit(F, A, e, inf(1,2),
param) ;

Fd2 = ratfun(A,d);

Misfit (run,digit+1) = min(misfit);

% count number of correct binary classifications
corrbin = sum((sign(Fd)==sign(lab)))/keep;
Corrbin(run,digit+1) = corrbin;

Digit = [Digit , Fd 1;

corrbin2 = sum((sign(Fd2)==sign(lab)))/keep;

Corrbin2(run,digit+1) = corrbin2;
Digit2 = [Digit2 , Fd2];
if run == 1
disp([' Training a classifer for digit: ' num2str(
digit)])
disp ([’ Correct POLY ©binary classifications: '
num2str (corrbin) 1)
disp ([’ Correct RKFIT binary classifications: '

num2str (corrbin2) J)
end
end
% evaluate number of overall correct classifications
[“,ind] = min(abs(Digit+1) ,[]1,2); ind = ind-1;
corr = sum((ind==1abels)) /keep;
Corr = [Corr , corr J;
[",ind] = min(abs(Digit2+1) ,[],2); ind = ind-1;

corr2 = sum((ind==1labels))/keep;
Corr?2 [Corr2 , corr2 1;
if run == 1

disp([' OVERALL POLY <correct classifications:

num2str (corr)])

disp([' OVERALL RKFIT correct classifications: !

num2str (corr2)])
else
disp(' [output supressed]')

end

disp (['MEAN POLY <correct digit classifications:

Corr))1)

disp (['MEAN RKFIT correct digit classifications:

Corr2))1)

num2str (mean (

num2str (mean (

RUN NUMBER 1
Training a classifer for digit: O

Correct POLY binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 1

Correct POLY ©binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 2

Correct POLY binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 3

Correct POLY ©binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 4

Correct POLY ©binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 5

Correct POLY binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 6

Correct POLY ©binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 7

Correct POLY binary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 8

Correct POLY Dbinary classifications:
Correct RKFIT binary classifications:

Training a classifer for digit: 9

Correct POLY ©binary classifications:
Correct RKFIT binary classifications:

OVERALL POLY correct classifications:
OVERALL RKFIT correct classifications:

o

O O O O

.989
.988

.973
.976

.974
.974

.972
.971

.943
.945

.936
.929

.99
.99

.948
.951

.956
.954

.922
.944
L7997
.806

RUN NUMBER 2
[output supressed]

RUN NUMBER 3
[output supressed]

RUN NUMBER 4
[output supressed]

RUN NUMBER 5
[output supressed]

MEAN POLY <correct digit classifications: 0.775
MEAN RKFIT correct digit classifications: 0.7822

5 Performance evaluation

The below bar chart shows the classification accuracy for each of the ten binary (one-
against-all) polynomial classifiers, and their respective RKFIT compressions. In this
example we have prelabeled 150 of the 1000 images and achieved a classification accuracy
above 77 %. The accuracy will increase if we prelabel a larger fraction of the images.
We generally find that a degree-2 rational approximant is just as good as the degree-
15 polynomial one, and in some cases even slightly better. We do not know whether
this is a random artefact or if there is an explanation why the rational reapproximation
can increase (”extrapolate”) the classification performance. This might be of interest for
future research.

figure

bar (0:9, [mean(Corrbin); mean(Corrbin2) 1')

hold on, plot((0:9)+.16,mean(Misfit), 'k-o0"')

title('correct binary classifications')

legend ('polynomial degree 15','RKFIT degree 2',...
'"RKFIT relative misfit','Location', 'Best')

x1im([-.5,9.5]), ylim([.0,1]), grid on, xlabel('digit');

correct binary classifications

0.8

B polynomial degree 15
[IRKFIT degree 2
—©- RKFIT relative misfit

04r

6 References

[1] M. Berljafa and S. Giittel. The RKFIT algorithm for nonlinear rational approzimation,
SIAM J. Sci. Comput., 39(5):A2049-A2071, 2017.

[2] A. Sandryhaila and J. M. F. Moura. Discrete signal processing on graphs: Graph filters,
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
6163-6166, 2013.

	Introduction
	Data loading
	Nearest neighbor adjacency
	Training the classifiers
	Performance evaluation
	References

