
Pole optimization for exponential integration

Mario Berljafa Stefan Güttel

May 2015

Contents

1 Introduction 1

2 Surrogate approach 1

3 The RKFIT outputs 2

4 Verifing the accuracy 3

5 Conversion to partial fraction form 4

6 Comparison with contour-based approach 5

7 Plot of the poles 6

8 References 7

1 Introduction

This example is concered with the computation of a family of common-denominator ra-
tional approximants for the two-parameter function exp(−tz) using RKFIT [2, 3]. This
corresponds to the example from [3, Section 6.2]. Let us consider the problem of solving
a linear constant-coefficient initial-value problem

u ′(t) + Lu(t) = 0 , u(0) = u0,

at several time points t1, . . . , t`. The exact solutions u(tj) are given in terms of the matrix
exponential as u(tj) = exp(−tjL)u0. A popular approach for approximating u(tj) is to
use rational functions r[j] of the form

r[j](z) =
σ
[j]
1

ξ1 − z
+

σ
[j]
2

ξ2 − z
+ · · ·+ σ

[j]
m

ξm − z
,

constructed so that r[j](L)u0 ≈ u(tj). Note that the poles of r[j] do not depend on tj and
we have

r[j](L)u0 =
m∑
i=1

σ
[j]
i (ξiI − L)−1u0,

1

the evaluation of which amounts to the solution of m linear systems. Such common-pole
approximants have great computational advantage, in particular, in combination with
direct solvers (as the LU factorizations of ξiI−L can be reused for each tj) and when the
linear systems are assigned to parallel processors.

2 Surrogate approach

In order to use RKFIT for finding ”good” poles ξ1, . . . , ξm of the rational functions r[j],
we propose a surrogate approach similar to that in [4]. Let A = diag(λ1, . . . , λN) be a
diagonal matrix whose eigenvalues are a ”sufficiently dense” discretization of the positive
semiaxis λ ≥ 0. In this example we take N = 500 logspaced eigenvalues in the interval
[10−6, 106]. Further, we define ` = 41 logspaced time points tj in the interval [10−1, 101],
and the matrices F [j] = exp(−tjA). We also define b = [1, . . . , 1]T to assign equal weight
to each eigenvalue of A.

N = 500;

ee = [0 , logspace(-6, 6, N-1)];

A = spdiags(ee(:), 0, N, N);

b = ones(N, 1);

t = logspace(-1, 1, 41);

for j = 1: length(t)

F{j} = spdiags(exp(-t(j)*ee(:)), 0, N, N);

end

We then run the RKFIT algorithm for finding a family of rational functions r[j] of type
(m− 1,m) with m = 12 so that ‖F [j]b − r[j](A)b‖2 is minimized for all j = 1, . . . , `.

m = 12; k = -1; % type (11, 12)

xi = inf(1,m); % initial poles at infinity

param.k = k; % subdiagonal approximant

param.maxit = 6; % at most 6 RKFIT iterations

param.tol = 0; % exactly 6 iterations

param.real = 1; % data is real -valued

[xi, ratfun , misfit , out] = rkfit(F, A, b, xi, param);

3 The RKFIT outputs

The first output argument of RKFIT is a vector xi collecting the poles ξ1, . . . , ξm of the
rational Krylov space. The second output ratfun is a cell array each cell of which is
a rkfun, a datatype representing a rational function. All rational functions in this cell
array share the same denominator with roots ξ1, . . . , ξm. The next output parameter is a
vector containing the computed relative misfit after each RKFIT iteration. The relative
misfit is defined as (cf. eq. (1.5) in [3])

misfit =

√√√√∑`
j=1 ‖F [j]b − r[j](A)b‖2F∑`

j=1 ‖F [j]b‖2F
.

We can easily verify that the last entry of misfit indeed corresponds to this formula:

2

num = 0; den = 0;

for j = 1: length(ratfun)

num = num + norm(F{j}*b - ratfun{j}(A,b), 'fro')^2;

den = den + norm(F{j}*b, 'fro')^2;

end

disp([misfit(end) sqrt(num/den)])

3.6468e-05 3.6468e-05

Here is a plot of the misfit vector, giving an idea of the RKFIT convergence:

figure

semilogy (0:6, [out.misfit_initial , misfit]*sqrt(den), 'r-');

xlabel('iteration ');

ylabel('absmisfit ')

title('RKFIT convergence ')

0 1 2 3 4 5 6

iteration

10-3

10-2

10-1

100

101

102

ab
sm

is
fit

RKFIT convergence

4 Verifing the accuracy

To evaluate the quality of the common-denominator rational approximants for all ` = 41
time points tj, we perform an experiment similar to that in [5, Figure 6.1] by approxi-
mating u(tj) = exp(−tjL)u0 and comparing the result to MATLAB’s expm. Here, L is
a 841× 841 finite-difference discretization of the scaled 2D Laplace operator −0.02∆ on
the domain [−1, 1]2 with homogeneous Dirichlet boundary condition, and u0 corresponds
to the discretization of u0(x, y) = (1− x2)(1− y2)ex on that domain.

% Parts of the following code have been taken from [5].

J = 30; h = 2/J; s = (-1+h:h:1-h) '; % in [3,5] J = 50 is used

[xx,yy] = meshgrid(s,s); % 2D grid

3

x = xx(:); y = yy(:); % 2D grid stretched to 1D

L = 0.02* gallery('poisson ',J-1)/h^2; % 2D Laplacian

v = (1-x.^2) .*(1-y.^2).*exp(x); % initial condition

v = v/norm(v);

for j = 1: length(t)

exac(:,j) = expm(-t(j)*L)*v;

rat = ratfun{j}(L,v);

err_rat(j) = norm(rat - exac(:,j));

bnd(j) = norm(ratfun{j}(A,b) - F{j}*b,inf);

end

We now plot the error ‖u(tj)−r[j](L)u0‖2 for each time point tj (curve with red circles), to-
gether with the approximate upper error bound ‖ exp(−tjA)b−r[j](A)b‖∞ (black curve),
which can be easily computed by direct evaluation. We find that the error is indeed
approximately uniform and smaller than 1.1× 10−4 over the time interval [10−1, 101].

figure

loglog(t, bnd , 'k-')

hold on

loglog(t, err_rat , 'r-o')

xlabel('time t'); ylabel('2-norm error ')

legend('RKFIT Bound ', 'RKFIT PFE', 'Location ', 'NorthWest ')

title('approximating exp(-tL)u_0 for many t')

grid on

axis ([0.1, 10, 1e-7, 1e6])

10-1 100 101

time t

10-5

100

105

2-
no

rm
 e

rr
or

approximating exp(-tL)u
0
 for many t

RKFIT Bound
RKFIT PFE

4

5 Conversion to partial fraction form

When evaluating the rational functions r[j] on a parallel computer, it is convenient to
have their partial fraction expansions at hand. The rkfun class provides a method called
residue for this purpose. This method supports the use of MATLAB’s variable precision
(VPA) capabilities, or the Advanpix Multiple Precision (MP) toolbox [1].

For example, here are the residues and poles of the first rational function r[1] corresponding
to exp(−t1A)b:

try mp(1); catch e, try mp=@(x)vpa(x); mp(1); catch e, mp=@(x)x;

warning('MP & VPA are unavailable. Using double.'); end , end

[resid , xi, absterm , cnd , pf] = residue(mp(ratfun {1}));

disp(double ([resid , xi]))

1.1058e-01 - 4.2664e-03i -3.9348e-01 + 1.9680e-01i

1.1058e-01 + 4.2664e-03i -3.9348e-01 - 1.9680e-01i

1.2375e-01 + 9.7078e-03i -2.7724e-01 + 6.4704e-01i

1.2375e-01 - 9.7078e-03i -2.7724e-01 - 6.4704e-01i

2.7683e-01 - 2.6172e-02i -1.3284e-01 + 1.6788e+00i

2.7683e-01 + 2.6172e-02i -1.3284e-01 - 1.6788e+00i

5.0072e-01 - 4.3971e-01i 5.8293e-01 + 4.5857e+00i

5.0072e-01 + 4.3971e-01i 5.8293e-01 - 4.5857e+00i

-2.1039e-01 - 1.1989e+00i 4.0705e+00 + 1.1486e+01i

-2.1039e-01 + 1.1989e+00i 4.0705e+00 - 1.1486e+01i

-7.7942e-01 + 2.9661e-01i 1.7954e+01 + 2.5464e+01i

-7.7942e-01 - 2.9661e-01i 1.7954e+01 - 2.5464e+01i

6 Comparison with contour-based approach

We now compare RKFIT with the accuracy of the contour-based rational approximants
derived in [5]. As discussed there, this approach leads to approximants which are very
accurate near t ≈ 1, but their accuracy degrades rapidly as one moves away from this
parameter.

% Contour integral code from [5].

NN = 12; theta = pi *(1:2:NN -1)/NN; % quad pts in (0, pi)

z = NN *(.1309 -.1194* theta .^2); % quad pts on contour

z = z + NN *.2500i*theta;

w = NN *(-.1194*2* theta +.2500i); % derivatives

for j = 1: length(t)

c = (1i/NN)*exp(t(j)*z).*w; % quadrature weights

appr = zeros(size(v));

for k = 1:NN/2, % sparse linear solves

appr = appr - c(k)*((z(k)*speye(size(L))+L)\v);

end

appr = 2*real(appr); % exploit symmetry

err_cont(j) = norm(appr -exac(:,j));

end

5

loglog(t,err_cont ,'b--s')

legend('RKFIT Bound ', 'RKFIT PFE', 'Contour PFE', ...

'Location ', 'NorthWest ')

10-1 100 101

time t

10-5

100

105

2-
no

rm
 e

rr
or

approximating exp(-tL)u
0
 for many t

RKFIT Bound
RKFIT PFE
Contour PFE

7 Plot of the poles

Finally, the m = 12 poles of the rational functions r[j] are shown in the following plot.
We can see that the ”optimal” RKFIT poles do not seem to lie on a parabolic contour.

figure

hh1 = plot(xi , 'ro');

axis([-3, 12, -13, 13])

hold on

% Also plot the contour.

theta = linspace(0, 2*pi, 300);

zz = -NN *(.1309 -.1194* theta .^2+.2500i*theta);

plot(zz , 'b-')

plot(conj(zz), 'b-')

hh2 = plot(-[z, conj(z)], 'bs');

plot([0, 1e3], [0, 0], 'k-', 'LineWidth ', 3)

xlabel('real '), ylabel('imag ')

title('poles of rational approximants for exp(-tz)')

grid on

legend ([hh1 , hh2], 'RKFIT ', 'Contour ', 'Location ', 'NorthWest ')

6

-2 0 2 4 6 8 10 12

real

-10

-5

0

5

10
im

ag

poles of rational approximants for exp(-tz)

RKFIT
Contour

8 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, ver 3.8.3.8882,
Tokyo, Japan, 2015. http://www.advanpix.com/.

[2] M. Berljafa and S. Güttel. A Rational Krylov Toolbox for MATLAB, MIMS EPrint
2014.56 (http://eprints.ma.man.ac.uk/2390/), Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2014.

[3] M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational approximation,
SIAM J. Sci. Comput., 39(5):A2049–A2071, 2017.

[4] R.-U. Börner, O. G. Ernst, and S. Güttel. Three-dimensional transient electromag-
netic modeling using rational Krylov methods, Geophys. J. Int., 202(3):2025–2043, 2015.
Available also as MIMS EPrint 2014.36 (http://eprints.ma.man.ac.uk/2219/).

[5] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures and rational
approximations, BIT, 46(3):653–670, 2006.

7

http://www.advanpix.com/
http://eprints.ma.man.ac.uk/2390/
http://eprints.ma.man.ac.uk/2219/

	Introduction
	Surrogate approach
	The RKFIT outputs
	Verifing the accuracy
	Conversion to partial fraction form
	Comparison with contour-based approach
	Plot of the poles
	References

