Pole optimization for exponential integration

Mario Berljafa Stefan Giittel
May 2015

Contents

[1__Introductionl 1
|2 Surrogate approach| 1
3 The T outputs 2
4 Verifing the accuracy| 3
[> Conversion to partial fraction form| 4
[6 Comparison with contour-based approach| 5
[7 Plot of the poles| 6
I8 _References| 7

1 Introduction

This example is concered with the computation of a family of common-denominator ra-
tional approximants for the two-parameter function exp(—tz) using RKFIT [2, 3]. This
corresponds to the example from [3, Section 6.2]. Let us consider the problem of solving
a linear constant-coefficient initial-value problem

u'(t) + Lu(t) = 0, u(0) = uy,

at several time points t1, ..., %,. The exact solutions w(t;) are given in terms of the matrix
exponential as u(t;) = exp(—t;L)ug. A popular approach for approximating w(t;) is to
use rational functions r¥! of the form
[s1 [j] [4]
() = 91 92 gm
rvi(z) = + + o+ ;
=) §i—z &—=z Em — 2
constructed so that rUl(L)uy ~ u(t;). Note that the poles of ! do not depend on ¢; and
we have

Ly =Y oM (> — L),
i=1

the evaluation of which amounts to the solution of m linear systems. Such common-pole
approximants have great computational advantage, in particular, in combination with
direct solvers (as the LU factorizations of ;I — L can be reused for each t;) and when the
linear systems are assigned to parallel processors.

2 Surrogate approach

In order to use RKFIT for finding ”good” poles &1, ..., &y of the rational functions 7V,
we propose a surrogate approach similar to that in [4]. Let A = diag(Ay,...,Ax) be a
diagonal matrix whose eigenvalues are a ”sufficiently dense” discretization of the positive
semiaxis A > 0. In this example we take N = 500 logspaced eigenvalues in the interval
[107%,10°%]. Further, we define ¢ = 41 logspaced time points ¢; in the interval [10~*,10'],
and the matrices FV! = exp(—t;A4). We also define b = [1,...,1]T to assign equal weight
to each eigenvalue of A.

= 500;
ee = [0 , logspace(-6, 6, N-1)];
A = spdiags(ee(:), 0, N, N);
b = ones(N, 1);
t = logspace(-1, 1, 41);

for j = 1:length(t)
F{j} = spdiags(exp(-t(j)*ee(:)), 0, N, N);
end

We then run the RKFIT algorithm for finding a family of rational functions r¥ of type
(m — 1,m) with m = 12 so that ||FUlb — rll(A)b||5 is minimized for all j = 1,..., £

m = 12; k = -1; % type (11, 12)
xi = inf(1,m); % initial poles at infinity
param.k = k; % subdiagonal approximant

param.maxit 6; % at most 6 RKFIT iterations
param. tol 0; %» exactly 6 iterations
param.real % data is real-valued

[xi, ratfun, misfit, out] = rkfit(F, A, b, xi, param);

]
[

3 The RKFIT outputs

The first output argument of RKFIT is a vector xi collecting the poles &, ..., &, of the
rational Krylov space. The second output ratfun is a cell array each cell of which is
a rkfun, a datatype representing a rational function. All rational functions in this cell
array share the same denominator with roots &, ..., &,,. The next output parameter is a
vector containing the computed relative misfit after each RKFIT iteration. The relative
misfit is defined as (cf. eq. (1.5) in [3])

351 |1 FUTb — rll(A)b];
S IFUBIE

We can easily verify that the last entry of misfit indeed corresponds to this formula:

misfit =

num = 0; den = O0;

for j 1:length(ratfun)
num = num + norm(F{j}*b - ratfun{j}(A,b), 'fro')"2;
den = den + norm(F{j}*b, 'fro')"2;

end

disp([misfit(end) sqrt(num/den)])

3.6468e-05 3.6468e-05

Here is a plot of the misfit vector, giving an idea of the RKFIT convergence:

figure

semilogy (0:6, [out.misfit_initial, misfit]*sqrt(den), 'r-');
xlabel ('iteration');

ylabel ('absmisfit')

title ('RKFIT convergence')

RKFIT convergence
102 T T T T T

10*

absmisfit

iteration

4 Verifing the accuracy

To evaluate the quality of the common-denominator rational approximants for all £ = 41
time points ¢;, we perform an experiment similar to that in [5, Figure 6.1] by approxi-
mating u(t;) = exp(—t;L)uy and comparing the result to MATLAB’s expm. Here, L is
a 841 x 841 finite-difference discretization of the scaled 2D Laplace operator —0.02A on
the domain [—1,1]* with homogeneous Dirichlet boundary condition, and g corresponds
to the discretization of ug(z,y) = (1 — z%)(1 — y*)e® on that domain.

% Parts of the following code have been taken from [5].
J =30; h=2/J; s = (-1+h:h:1-h)'; % in [3,5] J = 50 is used
[xx,yy] = meshgrid(s,s); % 2D grid

xx(:); v = yy(:); % 2D grid stretched to 1D
0.02xgallery('poisson',J-1)/h"2; 7 2D Laplacian

(1-x.72) . *x(1-y."2) .*xexp(x); % initial condition
v/norm(v) ;

< < X
I

for j = 1:length(t)
exac(:,j) = expm(-t(j)*L)x*v;
rat = ratfun{j}(L,v);

err_rat(j) = norm(rat - exac(:,j));
bnd (j) = norm(ratfun{j}(A,b) - F{j}*b,inf);
end

We now plot the error ||u(t;)—7r)(L)uyl|2 for each time point ¢; (curve with red circles), to-
gether with the approximate upper error bound || exp(—t;A)b —rVl(A)b|» (black curve),
which can be easily computed by direct evaluation. We find that the error is indeed
approximately uniform and smaller than 1.1 x 10 over the time interval [107!, 10!].

figure

loglog(t, bnd, 'k-")

hold on

loglog(t, err_rat, 'r-o')

xlabel('time t'); ylabel('2-norm error')

legend ('RKFIT Bound', 'RKFIT PFE', 'Location', 'NorthWest')
title('approximating exp(-tL)u_O0 for many t')
grid on

axis ([0.1, 10, 1e-7, 1e6])

approximating exp(-tL)u 0 for many t

10° | |— RKFIT Bound g
-6 RKFIT PFE

2-norm error

5 Conversion to partial fraction form

When evaluating the rational functions rUl on a parallel computer, it is convenient to
have their partial fraction expansions at hand. The rkfun class provides a method called
residue for this purpose. This method supports the use of MATLARB’s variable precision
(VPA) capabilities, or the Advanpix Multiple Precision (MP) toolbox [1].

For example, here are the residues and poles of the first rational function r!*! corresponding
to exp(—t1A)b:

try mp(1); catch e, try mp=Q@(x)vpa(x); mp(1l); catch e, mp=0(x)x;
warning ('MP & VPA are unavailable. Using double.'); end, end
[resid, xi, absterm, cnd, pf] = residue(mp(ratfun{i}));
disp(double([resid , xil))
1.1058e-01 - 4.2664e-031 -3.9348e-01 1.9680e-011
1.1058e-01 + 4.2664e-031 -3.9348e-01 1.9680e-011
1.2375e-01 + 9.7078e-031 -2.7724e-01 6.4704e-011
1.2375e-01 - 9.7078e-031 -2.7724e-01 6.4704e-011
2.7683e-01 - 2.6172e-02i -1.3284e-01 1.6788e+001
2.7683e-01 + 2.6172e-02i -1.3284e-01 1.6788e+001
5.0072e-01 - 4.3971e-011 5.8293e-01 4.5857e+001
5.0072e-01 + 4.3971e-011 5.8293e-01 4.5857e+001
-2.1039e-01 - 1.1989e+001 4.0705e+00 1.1486e+011
-2.1039e-01 + 1.1989e+001 4.0705e+00 1.1486e+011
-7.7942e-01 + 2.9661e-011 1.7954e+01 2.5464e+011
-7.7942e-01 - 2.9661e-011 1.7954e+01 2.5464e+011

6 Comparison with contour-based approach

We now compare RKFIT with the accuracy of the contour-based rational approximants
derived in [5]. As discussed there, this approach leads to approximants which are very
accurate near t ~ 1, but their accuracy degrades rapidly as one moves away from this
parameter.

% Contour integral code from [5].
NN = 12; theta = pix*(1:2:NN-1)/NN; % quad pts in (0, pi)
z = NN%(.1309-.1194*theta.”2); % quad pts on contour
z =z + NN#*.2500i*xtheta;
w = NN*(-.1194*2*xtheta+.25001i) ; % derivatives
for j = 1:length(t)
c = (1i/NN)*exp(t(j)*z) .*w; % quadrature weights
appr = zeros(size(v));
for k = 1:NN/2, % sparse linear solves
appr = appr - c(k)*((z(k)*speye(size(L))+L)\v);
end
appr = 2*real (appr); % exploit symmetry
err_cont (j) = norm(appr-exac(:,j));
end

loglog(t,err_cont, 'b--s')
legend ('RKFIT Bound', 'RKFIT PFE', 'Contour PFE',
'"Location', 'NorthWest')

approximating exp(-tL)u 0 for many t

10° | |— RKFIT Bound u10

~©- RKFIT PFE U
-+ Contour PFE I,j
ga !
- -
=

100+ EF]

2-norm error
o]

7 Plot of the poles

Finally, the m = 12 poles of the rational functions 7! are shown in the following plot.
We can see that the "optimal” RKFIT poles do not seem to lie on a parabolic contour.

figure

hhl = plot(xi, 'ro');
axis([-3, 12, -13, 13])
hold on

% Also plot the contour.

theta = linspace (0, 2*pi, 300);

zz = -NN*(.1309-.1194xtheta.~2+.2500i*theta) ;

plot (zz, 'b-')

plot(conj(zz), 'b-"')

hh2 = plot(-[z, conj(z)], 'bs');

plot ([0, 1e3], [0, 0], 'k-', 'LineWidth', 3)
xlabel('real'), ylabel('imag')

title('poles of rational approximants for exp(-tz)')
grid on

legend ([hh1, hh2], 'RKFIT', 'Contour', 'Location', 'NorthWest')

poles of rational approximants for exp(-tz)

O RKFIT O
10| O contour]
5F i
= O
e Of g
O
5 4
10 f |
()
2 0 2 4 6 8 10 12
real

8 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, ver 3.8.3.8882,
Tokyo, Japan, 2015. http://www.advanpix.com/.

[2] M. Berljafa and S. Giittel. A Rational Krylov Toolbox for MATLAB, MIMS EPrint
2014.56 (http://eprints.ma.man.ac.uk/2390/), Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2014.

[3] M. Berljafa and S. Giittel. The RKFIT algorithm for nonlinear rational approzimation,
SIAM J. Sci. Comput., 39(5):A2049-A2071, 2017.

[4] R.-U. Bérner, O. G. Ernst, and S. Giittel. Three-dimensional transient electromag-
netic modeling using rational Krylov methods, Geophys. J. Int., 202(3):2025-2043, 2015.
Available also as MIMS EPrint 2014.36 (http://eprints.ma.man.ac.uk/2219/).

[5] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures and rational
approzimations, BIT, 46(3):653-670, 2006.

http://www.advanpix.com/
http://eprints.ma.man.ac.uk/2390/
http://eprints.ma.man.ac.uk/2219/

	Introduction
	Surrogate approach
	The RKFIT outputs
	Verifing the accuracy
	Conversion to partial fraction form
	Comparison with contour-based approach
	Plot of the poles
	References

