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1 Introduction

This is an example of RKFIT being used for approximating exp(A)b, the action of the
matrix exponential onto a vector b. RKFIT is described in [1,2] and this code reproduces
Example 3 in [1].

This example demonstrates that RKFIT can sometimes find sensible approximants even
when A is a nonnormal and all initial poles are chosen at infinity. However, we also
demonstrate that the convergence can be sensitive to the intial guess, as is not surprising
with nonlinear iterations. We show how real (or complex conjugate) poles can be enforced
in RKFIT.

We first define the matrix A, the vector b, and the matrix F corresponding to exp(A).
Our aim is then to find a rational function r of type (m,m) such that ‖Fb − r(A)b‖2 is
small.

N = 100;

A = -5*gallery('grcar ', N, 3);

b = ones(N, 1);

f = @(x) exp(x); fm = @(X) expm(full(X));

F = fm(A);

exact = F*b;

[fov , evs] = util_fovals(full(A), 100);

In order to run RKFIT we only need to specify the initial poles ξj of r. In this first test
let’s choose all 16 initial poles equal to infinity.
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m = 16;

init_xi = inf(1, m);

2 Running RKFIT with real data

As all quantities F , A, and b, as well as the initial poles are real or infinite, it is rec-
ommended to use the ’real’ option. RKFIT will then attempt to produce a rational
approximant with perfectly complex conjugate (or even real) poles. We set the tolerance
for the relative misfit to 10−12:

maxit = 10;

tol = 1e-12;

xi = init_xi;

[xi,ratfun ,misfit ,out] = rkfit(F,A,b,xi,maxit ,tol ,'real ');

xi_rkfit = xi;

All computed poles appear in perfectly complex conjugate pairs.

xi_rkfit

xi_rkfit =

Columns 1 through 2

5.0886e+00 - 2.9517e+01i 5.0886e+00 + 2.9517e+01i

Columns 3 through 4

9.3538e+00 - 2.5243e+01i 9.3538e+00 + 2.5243e+01i

Columns 5 through 6

1.2161e+01 - 2.1323e+01i 1.2161e+01 + 2.1323e+01i

Columns 7 through 8

1.4113e+01 - 1.7513e+01i 1.4113e+01 + 1.7513e+01i

Columns 9 through 10

1.5456e+01 - 1.3717e+01i 1.5456e+01 + 1.3717e+01i

Columns 11 through 12

1.6329e+01 - 9.8811e+00i 1.6329e+01 + 9.8811e+00i

Columns 13 through 14

1.6836e+01 - 5.9754e+00i 1.6836e+01 + 5.9754e+00i

Columns 15 through 16

1.7062e+01 - 2.0015e+00i 1.7062e+01 + 2.0015e+00i

Here is a convergence history of RKFIT, showing the relative misfit defined as ‖Fb −
r(A)b‖2/‖Fb‖2 at each iteration. It turns out that only two iterations were required.

figure (2)

semilogy(misfit , 'ro --')

xlabel('iteration ')

title('relative 2-norm error ')
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3 Evaluating the rational approximant

The second output ratfun is an object that can be used to evaluate the computed rational
approximant. This evaluation is implemented in two ways. The first option is to evaluate
a matrix function r(A)b by calling ratfun(A,b) with two input arguments. For example,
here we are calculating the absolute misfit:

disp(norm(F*b - ratfun(A,b)))

3.7847e-12

Alternatively, we can evaluate r(z) pointwise by giving only one input argument. Let’s
plot the modulus of the scalar error function err(x) = f(x) − r(x) over a region in the
complex plane:

[X,Y] = meshgrid(linspace ( -18 ,18 ,500),linspace ( -30 ,30 ,500));

Z = X + 1i*Y;

E = f(Z) - ratfun(Z);

figure (1)

contourf(X,Y,log10(abs(E)),linspace (-16,8,25))

hold on

plot(evs ,'r.', 'MarkerSize ', 6)

plot(fov , 'm-')

plot(xi_rkfit , 'gx')

xlabel('real(z)'); ylabel('imag(z)')

title('abs(exp(z) - r(z))')

legend('error ', 'evs', 'fov', 'poles ', ...

'Location ', 'NorthWest ')

colorbar
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4 Some other choices for the initial poles

Choosing all initial poles equal to infinite seems to work fine. Let us try a finite initial
guess, e.g., choosing all poles at 0:

init_xi = zeros(1, m);

Again, RKFIT requires only 2 iterations:

[xi,ratfun ,misfit ,out] = rkfit(F,A,b,init_xi ,maxit ,tol ,'real ');

figure (2), hold on

semilogy(misfit ,'rs --')

legend('RKFIT (init poles = inf)','RKFIT (init poles = 0)')

4



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

iteration

10-13

10-12

10-11

10-10

10-9

10-8
relative 2-norm error

RKFIT (init poles  = inf)
RKFIT (init poles = 0)

Finally, let’s change the initial poles to −10. This turns out to be an unlucky initial
guess and RKFIT fails to find a minimizer within 10 iterations. Note that the matrix A
is highly nonnormal and RKFIT is a nonlinear iteration, which will probably make the
convergence analysis of this example very involved.

init_xi = -10*ones(1, m);

[xi,ratfun ,misfit ,out] = rkfit(F,A,b,init_xi ,maxit ,tol ,'real ');

semilogy(misfit ,'r*--')

legend('RKFIT (init poles = inf)','RKFIT (init poles = 0)' ,...

'RKFIT (init poles = -10)')
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That’s it. The following creates a thumbnail.

figure (1), plot(NaN)
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