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1 Introduction

FEAST is an algorithm for computing a few eigenpairs (λ, x) of a large sparse eigenvalue
problem Ax = λBx, where A is a Hermitian N ×N matrix, and B is Hermitian positive
definite [4]. FEAST belongs to the class of contour-based eigensolvers which have recently
attracted a lot of attention [3]. Mathematically, FEAST can be interpreted as a subspace
iteration applied to a rational matrix function which serves the purpose of separating the
wanted eigenvalues from the unwanted (i.e., it acts as a filter function). The RKFUN
calculus of the RKToolbox is a convenient tool for working with rational functions and
it allows for a simple implementation of the basic FEAST iteration. Of course, the full
FEAST implementation comes with many more ”bells and whistles,” and in this tutorial
we only aim to demonstrate the basic idea.

2 Model eigenvalue problem

Let us consider an eigenvalue problem Ax = λx, where A is a finite-difference discretiza-
tion of the Laplacian on a disk with homogeneous Dirichlet boundary conditions. Using
MATLAB’s eigs function, we first compute and visualize the 9 eigenvectors corresponding
to the smallest eigenvalues of A:

n = 150;

G = numgrid('D', n);

A = (n+1)^2* delsq(G);

N = size(A, 1);
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B = speye(N);

[V, D] = eigs(A, 9, 'SM');

[D, ind] = sort(diag(D)); V = V(:, ind);

figure (1)

for j = 1:9

subplot(3, 3, j)

v = V(:, j);

U = NaN*G;

U(G>0) = full(v(G(G>0)));

contourf(U);

prism , axis square ij , axis off

title(['\lambda = ' num2str(D(j))]);

end

3 Constructing the filter function

Suppose we want to find these 9 eigenmodes using FEAST, then we need to contruct a
rational filter which would separate the corresponding eigenvalues of A from the others.
To this end, we combine a type (9, 10) step function approximation for the interval [−1, 1]
with a linear transformation t mapping [0, 220] to [−1, 1]. The result is a near-optimal
rational filter r for the interval [0, 220], attaining values very close to 1 on that interval,
and oscillating about 0 outside:

lmin = 0; lmax = 220;

x = rkfun (); % independent

variable x

t = 2/(lmax -lmin)*x - (lmin+lmax)/(lmax -lmin); % map [lmin ,lmax]

-> [-1,1]

s = rkfun('step ', 5);

r = s(t);

figure , ezplot(r), hold on

2



0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Let’s compute the separation ratio between the approximate values for 1 and 0 by finding
the real local extrema of r, and then finding the smallest/largest modulus of r insid-
e/outside [0, 220] at these extrema. Such computations can become quite sensitive, in
particular with rational functions of high degree. We therefore recommend performing
this using the Advanpix Multipleprecision Toolbox [1]:

r = mp(r);

extrema = roots(diff(r), 'real ');

values = r(extrema);

plot(extrema , values , 'ro')

mini = min(abs(r(extrema(lmin < extrema & extrema < lmax))));

maxi = max(abs(r(extrema(lmin > extrema | extrema > lmax))));

plot([lmin , lmax], [mini , mini], 'k--')

plot([-1e6 , lmin], [maxi , maxi], 'k--')

plot([lmax , 1e6], [maxi , maxi], 'k--')
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According to [2], the approximate convergence factor of FEAST for finding the eigenpairs
in the interior of [0, 220] is given by the following ratio:

ratio = double(maxi/mini)

ratio =

1.9351e-02

4 A simple FEAST implementation

We can easily verify this numerically by implementing a simple subspace iteration applied
to r(A). Conveniently, the RKToolbox allows us to simply type r(A, V ) for computing
r(A)V , the action of the rational filter on a basis V for the search space.

% Change to double precision.

r = double(r);

% Search space basis V of dimension m.

m = 10;

V = randn(N, m);

for iter = 1:8

% Apply rational filter to V.

V = r(A, V);

% Compute and sort Ritz pairs.

Am = V'*A*V; Bm = V'*B*V;

[W, D] = eig(Am, Bm);

[D, ind] = sort(diag(D)); W = W(:, ind);

% B-normalize W.

nrm = sqrt(diag(W'*Bm*W)); W = W/diag(nrm);

% Form approximate eigenvectors.

V = V*W;

4



% Check residuals and number of eigenpairs inside

% search iterval.

Di = diag(D(lmin < D & D < lmax));

Vi = V(:, lmin < D & D < lmax);

resid(iter) = norm(A*Vi - B*Vi*Di, 'fro');

nrvec(iter) = size(Vi, 2);

end

Here is a plot of the residual norms after each FEAST iteration, together with the expected
convergence factor, and the number of Ritz values inside the search iterval:

figure

semilogy(resid , 'b-o'), hold on

semilogy (1e10*ratio .^(1: iter), 'k--')

for j = 1:iter

hdl = text(j-.1,5* resid(j), num2str(nrvec(j)));

set(hdl , 'FontSize ', 14, 'Color ', 'b')

end

xlim ([.5, iter +.5]), xlabel('iteration ')

legend('residual norm ','expected rate ')

ylim ([1e-8, 1e6])
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There is a very good agreement between the predicted and observed convergence. In the
first iteration, no Ritz value is in the search interval, but after only 3 iterations we have
found 10 Ritz values. Indeed, looking at the 9th eigenvector in the plot above, we expect
by symmetry that there will be a 10th eigenvalue corresponding to the same eigenvalue
≈ 202.3766.
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5 Remarks on parallel implementation

As mentioned above, our basic FEAST implementation is not at all efficient and serves
only the purpose of a demonstration. A main feature of FEAST is its parallelism in
evaluating r(A)V by using a partial fraction expansion of r of the form

r(z) =
α1

z − β1
+ · · · +

αn

z − βn
.

We can easily compute such an expansion using the residue command of the RKToolbox,
again in multiple precision to avoid accuracy loss. Here is a plot of the poles of r in the
complex plane, relative to the search interval [0, 220]:

[alpha ,beta] = residue(mp(r));

figure

plot(beta , 'ro'), hold on

plot([lmin , lmax], [0, 0], 'k-')
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That’s it. The following command creates a thumbnail

figure (1), hold on, plot(NaN)
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