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1 Introduction

With Version 2.2 of the RKToolbox the rkfun class and its methods have been substan-
tially extended. It is now possible to perform basic arithmetic operations on rational
functions that go beyond scalar multiplication and addition of constants. For example,
one can now add, multiply, divide, or exponentiate rkfun objects. Composition of an
rkfun with a Moebius transform is also possible. Furthermore, the rkfun constructor
now comes with the option to construct an object from a symbolic expression, or a string
specifying a rational function from the newly introduced gallery. We now demonstrate
some of these features. An application to electronic filter design is given below.

2 The RKFUN gallery

The rkfun class provides a gallery function which allows for the quick construction of some
useful rational functions. A list of the functions currently implemented can be obtained
by typing:

help rkfun.gallery

GALLERY Collection of rational functions.

obj = rkfun.gallery(funname , param1 , param2 , ...) takes
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funname , a case -insensitive string that is the name of

a rational function family , and the family 's input

parameters.

See the listing below for available function families.

constant Constant function of value param1.

cheby Chebyshev polynomial (first kind) of degree param1.

cayley Cayley transformation (1-z)/(1+z).

moebius Moebius transformation (az+b)/(cz+d) with

param1 = [a,b,c,d].

sqrt Zolotarev sqrt approximation of degree param1 on

the positive interval [1,param2 ].

invsqrt Zolotarev invsqrt approximation of degree param1 on

the positive interval [1,param2 ].

sqrt0h balanced Remez approximation to sqrt(x+(h*x/2) ^2)

of degree param3 on [param1 ,param2],

where param1 <= 0 <= param2 and h = param4.

sqrt2h balanced Zolotarev approximation to sqrt(x+(hx/2)

^2)

of degree param5 on [param1 ,param2]U[param3 ,param4

],

param1 < param2 < 0 < param3 < param4 , h = param6.

invsqrt2h balanced Zolotarev approximation to 1/sqrt(x+(hx/2)

^2)

of degree param5 on [param1 ,param2]U[param3 ,param4

],

param1 < param2 < 0 < param3 < param4 , h = param6.

sign Zolotarev sign approximation of degree 2* param1 on

the union of [1,param2] and [-param2 ,-1].

step Unit step function approximation for [-1,1] of

degree 2* param1 with steepness param2.

For example, we can construct an rkfun corresponding to a Moebius transform r(z) =
(4z + 3)/(2z − 1) as follows:

r = rkfun.gallery('moebius ', [4, 3, 2, -1])

r =

RKFUN object of type (1, 1).

Real -valued Hessenberg pencil (H, K) of size 2-by -1.

coeffs = [0.000 , 1.000]

As always with rkfun objects, we can perform several computations on r, such as com-
puting its roots and poles:

format long e

disp([ roots(r) poles(r)])

-7.500000000000000e-01 5.000000000000000e-01
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3 The symbolic constructor

Symbolic strings can also be used to construct rkfun objects, provided that the required
MATLAB symbolic toolboxes are installed. Here we construct an rkfun corresponding
to the rational function s(z) = 3(z − 3)(z2 − 1)/(z5 + 1):

s = rkfun('3*(z-3)*(z^2-1)/(z^5+1) ')

s =

RKFUN object of type (2, 4).

Real -valued Hessenberg pencil (H, K) of size 5-by -4.

coeffs = [0.000 , 0.000, -0.000, -0.000, 23.570]

This works by first finding the roots and poles of the input function symbolically and
then constructing the rkfun with these roots and poles numerically. Note that s is only
of type (2, 4) as one of the five denominator roots has been cancelled out by symbolic
simplifications prior to the numerical construction. The constructor should issue an error
if the provided string fails to be parsed by the symbolic engine, or if it does not represent
a rational function.

4 Arithmetic operations with rational functions

Since Version 2.2 of the RKToolbox one can add, multiply, divide, and exponentiate
rkfun objects. All these operations are implemented via transformations on generalized
rational Krylov decompositions [1, 2]. For example, here is the product of the two rational
functions r and s from above:

disp(r.*s)

RKFUN object of type (3, 5).

Real -valued Hessenberg pencil (H, K) of size 6-by -5.

coeffs = [0.000 , 0.000, 0.000, -0.000, -0.000, ...]

Note that it is necessary to use point-wise multiplication .*, not the matrix-multiplication
operator *. This is to be consistent with the MATLAB notation, and also with the
notation used in the Chebfun system [5] (where the * operator returns the inner product
of two polynomials; something we have not yet implemented for rkfun objects).

It is also possible to compose rkfun objects as long as the inner function is a Moebius
transform, i.e., a rational function of type at most (1, 1). The rational function r from
above is a Moebius transform, hence we can form the function f(z) = s(r(z))−1:

f = 1./s(r)

f =

RKFUN object of type (4, 4).

Real -valued Hessenberg pencil (H, K) of size 5-by -4.

coeffs = [-0.000, -0.002, -0.000, -0.005, -0.042]

The roots of f should correspond to the poles of s(r), which are the poles of s mapped
under the inverse function r−1. The latter inverse function is indeed well defined in the
whole complex plane as r is an invertible Moebius transform. We can compute it via the
inv command. Let’s verify that the roots/poles agree numerically:
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rts = sort(roots(f));

pls = sort(feval(inv(r), poles(s)));

disp([rts , pls])

Column 1

-4.256702311079903e-01 - 3.812725100682988e-01i

-4.256702311079903e-01 + 3.812725100682988e-01i

-1.187966132528373e+00 - 8.330610885153919e-01i

-1.187966132528373e+00 + 8.330610885153919e-01i

Column 2

-4.256702311079903e-01 - 3.812725100682988e-01i

-4.256702311079903e-01 + 3.812725100682988e-01i

-1.187966132528373e+00 - 8.330610885153928e-01i

-1.187966132528373e+00 + 8.330610885153928e-01i

5 Constructing rational filters

Rational filter functions are ubiquitous in scientific computing and engineering. For ex-
ample, in signal processing [3, 6] one is interested in deriving rational functions that act
as filters on selected frequency bands. Using the gallery of the RKToolbox and some
rkfun transformations, we can construct meaningful rational filters in just a few lines of
MATLAB code. Below is a plot of four popular filter types, which are obtained by rational
transforms of Chebyshev polynomials or the step function from rkfun’s gallery.

x = rkfun;

butterw = 1./(1 + x.^16);

cheby = rkfun('cheby ' ,8);

cheby1 = 1./(1 + 0.1* cheby .^2);

cheby2 = 1./(1 + 1./(0.1* cheby (1./x).^2));

ellip = rkfun('step ');

figure

subplot (221),ezplot(butterw ,[0 ,2]); title('Butterworth ')

subplot (222),ezplot(cheby1 , [0,2],'r');title('Chebyshev type 1')

subplot (223),ezplot(cheby2 , [0,2],'g');title('Chebyshev type 2')

subplot (224),ezplot(ellip , [0,2],'m');title('Elliptic ')
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The reader may compare this plot with that at the bottom of the Wikipedia page on elec-
tronic filters [7]. For example, the filter cheby2 involves multiple inverses of a Chebyshev
polynomial in the transformed variable x 7→ x−1. It has the so-called equiripple property
in the stopband, which is the region where the filter value is close to zero. The elliptic
filter ellip, also known as Cauer filter [4], has equiripple properties in both the stop-
and passbands. Such filters are based on Zolotarev’s equioscillating rational functions [8],
which are also implemented in the gallery of the RKToolbox.

6 Limitations

Although we hope that the new rkfun capabilities demonstrated above are already useful
for many practical purposes, there are still some short-comings one has to be aware of.
The main problem is that combinations of rkfun objects may have degrees higher than
theoretically necessary, which may lead to an unnecessarily fast growth of parameters.
For example, when subtracting an rkfun from itself,

r = rkfun('(1-x)/(1+x)');

d = r - r

d =

RKFUN object of type (2, 2).

Real -valued Hessenberg pencil (H, K) of size 3-by -2.

coeffs = [0.000 , -1.000, 1.000]

we currently obtain a type (2, 2) rational function, instead of the expected type (0, 0).
This is because the sum (or difference) of two type (1, 1) rational functions is of type (2, 2)
in the worst case, and we currently do not perform any degree reduction on the sum (or
difference). (A similar problem is encountered with multiplication or division.) The roots
and poles of the function d are meaningless, but the evaluation works fine, except when
we evaluate at (or nearby) a ”legacy” pole:
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d([-1, -1+1e-16, 0, 1, 2])

ans =

Columns 1 through 3

0 NaN

2.465190328815662e-31

Columns 4 through 5

0 -1.850371707708596e-17

A numerical degree reduction would probably require the concept of a ”domain of evalu-
ation.” To illustrate, consider the rational function r(z) = 10−14

z
+ 1

z−1
. The exact type of

this function is (1, 2), but the residue associated with z = 0 is tiny, so one may conclude
that this pole could be removed. However, when evaluating r for z ≈ 0, the removal
of this pole would lead to an inaccurate result (try z = 10−14). Hence, reliable degree
reduction may only be possible when a relevant ”domain of evaluation” is specified.
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