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1 Rational Krylov spaces

A rational Krylov space is a linear vector space of rational functions in a matrix times a
vector [5]. Let A be a square matrix of size N×N , b an N×1 nonzero starting vector, and
let ξ1, ξ2, . . . , ξm be a sequence of complex or infinite poles all distinct from the eigenvalues
of A. Then the rational Krylov space of order m+ 1 associated with A, b, ξj is defined as

Qm+1 ≡ Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Amb},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the common denominator of the rational functions

associated with Qm+1. The rational Krylov sequence method by Ruhe [5] computes an
orthonormal basis Vm+1 of Qm+1. The first column of Vm+1 can be chosen as Vm+1e1 =
b/‖b‖2. The basis matrix Vm+1 satisfies a rational Arnoldi decomposition of the form

AVm+1Km = Vm+1Hm,

where (Hm, Km) is an (unreduced) upper Hessenberg pencil of size (m+ 1)×m.

2 The poles of a rational Krylov space

Given a rational Arnoldi decomposition of the above form, it can be shown [1] that the
poles ξj of the associated rational Krylov space are the generalized eigenvalues of the lower
m×m subpencil of (Hm, Km). Let us verify this at a simple example by first constructing
a rational Krylov space associated with the m = 5 poles −1,∞,−i, 0, i. The matrix A
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is of size N = 100 and chosen as the tridiag matrix from MATLAB’s gallery, and
b is the first canonical unit vector. The rat krylov command is used to compute the
quantities in the rational Arnoldi decomposition:

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

m = 5;

xi = [-1, inf , -1i, 0, 1i];

[V, K, H] = rat_krylov(A, b, xi);

Indeed, the rational Arnoldi decomposition is satisfied with a residual norm close to
machine precision:

format shorte

disp(norm(A*V*K - V*H) / norm(H))

3.5143e-16

And the chosen poles ξj are the eigenvalues of the lower m×m subpencil:

disp(eig(H(2:m+1,1:m),K(2:m+1,1:m)))

-1.0000e+00 + 0.0000e+00i

Inf + 0.0000e+00i

0.0000e+00 - 1.0000e+00i

0.0000e+00 + 0.0000e+00i

0.0000e+00 + 1.0000e+00i

3 Moving the poles explicitly

There is a direct link between the starting vector b and the poles ξj of a rational Krylov

space Qm+1. A change of the poles ξj to ξ̆j can be interpreted as a change of the start-

ing vector from b to b̆, and vice versa. Algorithms for moving the poles of a rational
Krylov space are described in [1] and implemented in the functions move poles expl and
move poles impl.

For example, let us move the poles of the above rational Krylov space Qm+1 to the points
−1,−2, . . . ,−5:

xi_new = -1:-1:-5;

[KT, HT, QT, ZT] = move_poles_expl(K, H, xi_new);

The output of move poles expl are unitary matrices Q and Z, and transformed upper
Hessenberg matrices K̆m = QKmZ and H̆m = QHmZ, so that the lower m ×m part of

the pencil (H̆m, K̆m) has as generalized eigenvalues the new poles ξ̆j:

disp(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)))
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-1.0000e+00 + 0.0000e+00i

-2.0000e+00 + 1.4085e-15i

-3.0000e+00 - 7.2486e-16i

-4.0000e+00 + 1.6407e-16i

-5.0000e+00 - 2.4095e-16i

Defining V̆m+1 = Vm+1Q
∗, the transformed rational Arnoldi decomposition is

AV̆m+1K̆m = V̆m+1H̆m.

This can be verified numerically by looking at the residual norm:

VT = V*QT ';

disp(norm(A*VT*KT - VT*HT) / norm(HT))

6.8004e-16

It should be noted that the function move poles expl can be used to move the m poles to
arbitrary locations, including to infinity, and even to the eigenvalues of A. In latter case,
the transformed space V̆m+1 does not correspond to a rational Krylov space generated
with starting vector V̆m+1e1 and poles ξ̆j, but must be interpreted as a filtered rational
Krylov space. Indeed, the pole relocation problem is very similar to that of applying an
implicit filter to the rational Krylov space [3,4]. See also [1] for more details.

4 Moving the poles implicitly

Assume we are given a nonzero vector b̆ ∈ Qm+1 with coefficient representation b̆ =
Vm+1c, where c is a vector with m + 1 entries. The function move poles impl can be
used to obtain a transformed rational Arnoldi decomposition with starting vector b̆.

As an example, let us take c = [0, . . . , 0, 1]T and hence transform the rational Arnoldi
decomposition so that V̆m+1e1 = vm+1, the last basis vector in Vm+1:

c = zeros(m+1,1); c(m+1) = 1;

[KT, HT, QT, ZT] = move_poles_impl(K, H, c);

VT = V*QT ';

The poles of the rational Krylov space with the modified starting vector can again be
read off as the generalized eigenvalues of the lower m×m part of (H̆m, K̆m):

disp(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)))

3.2914e+00 - 5.5756e-02i

1.8705e+00 - 1.2100e-01i

7.7852e-01 - 9.2093e-02i

1.9752e-01 - 3.0824e-02i

4.4392e-03 - 3.5884e-04i

This implicit pole relocation procedure is key element of the RKFIT algorithm described
in [1,2].
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5 Some fun with moving poles

To conclude this example, let us consider a 10× 10 random matrix A, a random vector b,
and the corresponding 6-dimensional rational Krylov space with poles at −2,−1, 0, 1, 2:

A = (randn (10) + 1i*randn (10))*.5;

b = randn (10,1) + 1i*randn (10,1);

m = 5;

xi = -2:2;

[V, K, H] = rat_krylov(A, b, xi);

Here are the eigenvalues of A:

figure

plot(eig(A),'ko','MarkerFaceColor ','y')

axis ([ -2.5 ,2.5 , -2.5 ,2.5]), grid on , hold on
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We now consider a t-dependent coefficient vector c(t) such that Vm+1c(t) is continuously
”morphed” from v1 to v2. The poles of the rational Krylov space with the transformed
starting vector Vm+1c(t) are then plotted as a function of t.

for t = linspace (1,2,51),

c = zeros(m+1,1);

c(floor(t)) = cos(pi*(t-floor(t))/2);

c(floor(t)+1) = sin(pi*(t-floor(t))/2);

[KT , HT , QT] = move_poles_impl(K, H, c);% transformed pencil

xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m))); % new poles

plot(real(xi_new), imag(xi_new), 'b+')

end
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As one can see, only one of the five poles starts moving away from −2, with the remaining
four poles staying at their positions. This is because ”morphing” the starting vector from
v1 to v2 only affects a two-dimensional subspace of Qm+1 which includes the vector b and
is itself a rational Krylov space, and this space is parameterized by one pole only.

As we now continue morphing from v2 to v3, another pole starts moving:

for t = linspace (2,3,51),

c = zeros(m+1,1);

c(floor(t)) = cos(pi*(t-floor(t))/2);

c(floor(t)+1) = sin(pi*(t-floor(t))/2);

[KT , HT , QT, ZT] = move_poles_impl(K, H, c);

xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)));

plot(xi_new , 'r+')

end
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Morphing from v3 to v4, then to v5, and finally to v6 will eventually affect all five poles
of the rational Krylov space:

for t = linspace(3, 5.99, 150)

c = zeros(m+1,1);

c(floor(t)) = cos(pi*(t-floor(t))/2);

c(floor(t)+1) = sin(pi*(t-floor(t))/2);

[KT , HT , QT, ZT] = move_poles_impl(K, H, c);

xi_new = sort(eig(HT(2:m+1, 1:m), KT(2:m+1, 1:m)));

switch floor(t)

case 3, plot(xi_new ', 'g+')

case 4, plot(xi_new ', 'm+')

case 5, plot(xi_new ', 'c+')

end

end
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