Moving the poles of a rational Krylov space

Mario Berljafa Stefan Güttel

June 2015

Contents

1	Rational Krylov spaces	1
2	The poles of a rational Krylov space	1
3	Moving the poles explicitly	2
4	Moving the poles implicitly	3
5	Some fun with moving poles	3
6	References	7

1 Rational Krylov spaces

A rational Krylov space is a linear vector space of rational functions in a matrix times a vector [5]. Let A be a square matrix of size $N \times N$, **b** an $N \times 1$ nonzero starting vector, and let $\xi_1, \xi_2, \ldots, \xi_m$ be a sequence of complex or infinite *poles* all distinct from the eigenvalues of A. Then the rational Krylov space of order m + 1 associated with A, **b**, ξ_j is defined as

$$\mathcal{Q}_{m+1} \equiv \mathcal{Q}_{m+1}(A, \boldsymbol{b}, q_m) = q_m(A)^{-1} \operatorname{span}\{\boldsymbol{b}, A\boldsymbol{b}, \dots, A^m \boldsymbol{b}\},\$$

where $q_m(z) = \prod_{j=1,\xi_j\neq\infty}^m (z-\xi_j)$ is the common denominator of the rational functions associated with \mathcal{Q}_{m+1} . The rational Krylov sequence method by Ruhe [5] computes an orthonormal basis V_{m+1} of \mathcal{Q}_{m+1} . The first column of V_{m+1} can be chosen as $V_{m+1}\mathbf{e}_1 = \mathbf{b}/\|\mathbf{b}\|_2$. The basis matrix V_{m+1} satisfies a rational Arnoldi decomposition of the form

$$AV_{m+1}\underline{K_m} = V_{m+1}\underline{H_m},$$

where $(\underline{H}_m, \underline{K}_m)$ is an (unreduced) upper Hessenberg pencil of size $(m+1) \times m$.

2 The poles of a rational Krylov space

Given a rational Arnoldi decomposition of the above form, it can be shown [1] that the poles ξ_j of the associated rational Krylov space are the generalized eigenvalues of the lower $m \times m$ subpencil of $(\underline{H}_m, \underline{K}_m)$. Let us verify this at a simple example by first constructing a rational Krylov space associated with the m = 5 poles $-1, \infty, -i, 0, i$. The matrix A

is of size N = 100 and chosen as the tridiag matrix from MATLAB's gallery, and **b** is the first canonical unit vector. The rat_krylov command is used to compute the quantities in the rational Arnoldi decomposition:

```
N = 100;
A = gallery('tridiag', N);
b = eye(N, 1);
m = 5;
xi = [-1, inf, -1i, 0, 1i];
[V, K, H] = rat_krylov(A, b, xi);
```

Indeed, the rational Arnoldi decomposition is satisfied with a residual norm close to machine precision:

```
format shorte
disp(norm(A*V*K - V*H) / norm(H))
```

3.5143e-16

And the chosen poles ξ_i are the eigenvalues of the lower $m \times m$ subpencil:

disp(eig(H(2:m+1,1:m),K(2:m+1,1:m)))

```
-1.0000e+00 + 0.0000e+00i
Inf + 0.0000e+00i
0.0000e+00 - 1.0000e+00i
0.0000e+00 + 0.0000e+00i
0.0000e+00 + 1.0000e+00i
```

3 Moving the poles explicitly

There is a direct link between the starting vector \boldsymbol{b} and the poles ξ_j of a rational Krylov space \mathcal{Q}_{m+1} . A change of the poles ξ_j to $\check{\xi}_j$ can be interpreted as a change of the starting vector from \boldsymbol{b} to $\check{\boldsymbol{b}}$, and vice versa. Algorithms for moving the poles of a rational Krylov space are described in [1] and implemented in the functions move_poles_expl and move_poles_impl.

For example, let us move the poles of the above rational Krylov space Q_{m+1} to the points $-1, -2, \ldots, -5$:

xi_new = -1:-1:-5;
[KT, HT, QT, ZT] = move_poles_expl(K, H, xi_new);

The output of move_poles_expl are unitary matrices Q and Z, and transformed upper Hessenberg matrices $\underline{\breve{K}_m} = Q\underline{K_m}Z$ and $\underline{\breve{H}_m} = Q\underline{H_m}Z$, so that the lower $m \times m$ part of the pencil $(\breve{H}_m, \breve{K}_m)$ has as generalized eigenvalues the new poles $\breve{\xi}_j$:

```
disp(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)))
```

```
-1.0000e+00 + 0.0000e+00i
-2.0000e+00 + 1.4085e-15i
-3.0000e+00 - 7.2486e-16i
-4.0000e+00 + 1.6407e-16i
-5.0000e+00 - 2.4095e-16i
```

Defining $\check{V}_{m+1} = V_{m+1}Q^*$, the transformed rational Arnoldi decomposition is

$$A\breve{V}_{m+1}\underline{\breve{K}_m} = \breve{V}_{m+1}\underline{\breve{H}_m}.$$

This can be verified numerically by looking at the residual norm:

```
VT = V*QT';
disp(norm(A*VT*KT - VT*HT) / norm(HT))
```

```
6.8004e-16
```

It should be noted that the function move_poles_expl can be used to move the m poles to arbitrary locations, including to infinity, and even to the eigenvalues of A. In latter case, the transformed space \check{V}_{m+1} does not correspond to a rational Krylov space generated with starting vector $\check{V}_{m+1}e_1$ and poles $\check{\xi}_j$, but must be interpreted as a *filtered* rational Krylov space. Indeed, the pole relocation problem is very similar to that of applying an implicit filter to the rational Krylov space [3,4]. See also [1] for more details.

4 Moving the poles implicitly

Assume we are given a nonzero vector $\mathbf{\breve{b}} \in \mathcal{Q}_{m+1}$ with coefficient representation $\mathbf{\breve{b}} = V_{m+1}\mathbf{c}$, where \mathbf{c} is a vector with m + 1 entries. The function move_poles_impl can be used to obtain a transformed rational Arnoldi decomposition with starting vector $\mathbf{\breve{b}}$.

As an example, let us take $\boldsymbol{c} = [0, \ldots, 0, 1]^T$ and hence transform the rational Arnoldi decomposition so that $\check{V}_{m+1}\boldsymbol{e}_1 = \boldsymbol{v}_{m+1}$, the last basis vector in V_{m+1} :

```
c = zeros(m+1,1); c(m+1) = 1;
[KT, HT, QT, ZT] = move_poles_impl(K, H, c);
VT = V*QT';
```

The poles of the rational Krylov space with the modified starting vector can again be read off as the generalized eigenvalues of the lower $m \times m$ part of $(\check{H}_m, \check{K}_m)$:

```
disp(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)))
```

```
3.2914e+00 - 5.5756e-02i
1.8705e+00 - 1.2100e-01i
7.7852e-01 - 9.2093e-02i
1.9752e-01 - 3.0824e-02i
4.4392e-03 - 3.5884e-04i
```

This implicit pole relocation procedure is key element of the RKFIT algorithm described in [1,2].

5 Some fun with moving poles

To conclude this example, let us consider a 10×10 random matrix A, a random vector **b**, and the corresponding 6-dimensional rational Krylov space with poles at -2, -1, 0, 1, 2:

```
A = (randn(10) + 1i*randn(10))*.5;
b = randn(10,1) + 1i*randn(10,1);
m = 5;
xi = -2:2;
[V, K, H] = rat_krylov(A, b, xi);
```

Here are the eigenvalues of A:

```
figure
plot(eig(A), 'ko', 'MarkerFaceColor', 'y')
axis([-2.5,2.5,-2.5,2.5]), grid on, hold on
```


We now consider a t-dependent coefficient vector $\boldsymbol{c}(t)$ such that $V_{m+1}\boldsymbol{c}(t)$ is continuously "morphed" from \boldsymbol{v}_1 to \boldsymbol{v}_2 . The poles of the rational Krylov space with the transformed starting vector $V_{m+1}\boldsymbol{c}(t)$ are then plotted as a function of t.

```
for t = linspace(1,2,51),
    c = zeros(m+1,1);
    c(floor(t)) = cos(pi*(t-floor(t))/2);
    c(floor(t)+1) = sin(pi*(t-floor(t))/2);
    [KT, HT, QT] = move_poles_impl(K, H, c);% transformed pencil
    xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m))); % new poles
    plot(real(xi_new), imag(xi_new), 'b+')
end
```


As one can see, only one of the five poles starts moving away from -2, with the remaining four poles staying at their positions. This is because "morphing" the starting vector from v_1 to v_2 only affects a two-dimensional subspace of Q_{m+1} which includes the vector \boldsymbol{b} and is itself a rational Krylov space, and this space is parameterized by one pole only.

As we now continue morphing from v_2 to v_3 , another pole starts moving:

```
for t = linspace(2,3,51),
    c = zeros(m+1,1);
    c(floor(t)) = cos(pi*(t-floor(t))/2);
    c(floor(t)+1) = sin(pi*(t-floor(t))/2);
    [KT, HT, QT, ZT] = move_poles_impl(K, H, c);
    xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)));
    plot(xi_new, 'r+')
end
```


Morphing from v_3 to v_4 , then to v_5 , and finally to v_6 will eventually affect all five poles of the rational Krylov space:

```
for t = linspace(3, 5.99, 150)
  c = zeros(m+1,1);
  c(floor(t)) = cos(pi*(t-floor(t))/2);
  c(floor(t)+1) = sin(pi*(t-floor(t))/2);
  [KT, HT, QT, ZT] = move_poles_impl(K, H, c);
  xi_new = sort(eig(HT(2:m+1, 1:m), KT(2:m+1, 1:m)));
  switch floor(t)
    case 3, plot(xi_new', 'g+')
    case 4, plot(xi_new', 'm+')
    case 5, plot(xi_new', 'c+')
  end
end
```


6 References

[1] M. Berljafa and S. Güttel. *Generalized rational Krylov decompositions with an appli*cation to rational approximation, SIAM J. Matrix Anal. Appl., 36(2):894–916, 2015.

[2] M. Berljafa and S. Güttel. *The RKFIT algorithm for nonlinear rational approximation*, SIAM J. Sci. Comput., 39(5):A2049–A2071, 2017.

[3] G. De Samblanx and A. Bultheel. Using implicitly filtered RKS for generalised eigenvalue problems, J. Comput. Appl. Math., 107(2):195–218, 1999.

[4] G. De Samblanx, K. Meerbergen, and A. Bultheel. *The implicit application of a rational filter in the RKS method*, BIT, 37(4):925–947, 1997.

[5] A. Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput., 19(5):1535–1551, 1998.