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1 Introduction

The analysis of complex networks using tools from linear algebra has recently regained
popularity. One way to define the relative importance of a network’s node, known as
centrality, is to quantify its ability to initiate walks around the network. The connection
to linear algebra is that with each graph we can associate an adjacency matrix A, so
that Aij = 1 if there is an edge (either directed or undirected) from i to j, and Aij = 0
otherwise. The number of walks of length k between nodes i and j is obtained as the (i, j)
element of Ak. The total number of walks originating from node i is the i-th element of
the vector

∑∞
k=0 A

k1 , where 1 is the vector of all ones.

In applications it may be unreasonable to weigh very short and very long walks equally,
so walks of length k are penalized by a parameter 0 < αk ≤ 1. Two choices of αk have
been particularly popular: αk = αk with 0 < α < 1, and αk = 1/k!. In the former case we
assume further that α < 1/ρ(A), where ρ(A) is the spectral radius of A. In this case the
vector centrality scores are the elements of (I −αA)−11 . This resolvent-based measure is
known as Katz centrality [4]. In the second case the vector of centrality scores is exp(A)1 .
This exponential-based measure is known as total communicability [2].

Depending on the application, either the exponential centrality or the resolvent centrality
may be more appropriate to rank the importance of nodes, but also computational consid-
erations may determine the choice of centrality. An interesting question is the following:
for which value of the Katz parameter α will both centrality measures be most similar?
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This question is, of course, a simple rational approximation problem. For example, if we
aim to minimize the 2-norm difference between the centrality vectors (allowing for some
scaling), the problem becomes: find (real) parameters α, β such that

‖ exp(A)1 − β(I − αA)−11‖2 → min .

Note that if we are only interested in the ranking of nodes, the scaling of the resolvent
centralities by β will have no effect on the ordering of the nodes.

2 Power network example

We now demonstrate how RKFIT [3] can be used to determine good values for α and
β, a problem that is equivalent to finding a type (0, 1) rational approximant r(A)1 ,
r(z) = β/(1− αz), of the exponential centrality exp(A)1 .

We consider a network arising as a topological representation of the Western States Power
Grid of the USA. The network is available from the Florida Sparse Matrix collection
(http://www.cise.ufl.edu/research/sparse/matrices/Newman/power.html). As a first step
we load the adjacency matrix A of the network and plot its associated graph:

if exist('power.mat') ~= 2

disp('File power.mat not found. Can be downloaded from:')

disp(['http :// www.cise.ufl.edu/research/sparse/' ...

'matrices/Newman/power.html '])

return

end

load power.mat

A = Problem.A;

G = graph(A, 'OmitSelfLoops ');

plot(G, 'LineWidth ', 1, 'EdgeColor ', [0, 0, 0]);

axis ([-5.7, 7.5, -7, 6.5]), axis off
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3 Exponential centrality

We now compute the exponential centralities using the function expmv available from
http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix-exponential-
times-a-vector/content/expmv.m. By sorting the entries of the vector exp(A)1 , we can
identify the 10 highest ranked nodes in the power network:

if exist('expmv ') ~= 2

disp('Code exmpv not found. Can be downloaded from:')

disp(['http :// www.mathworks.com/matlabcentral/fileexchange/'

...

'29576 -matrix -exponential -times -a-vector/content/expmv.m

'])

return

end

b = ones(size(A, 1), 1);

F = @(v) expmv(1, A, v);

centr_exp = F(b);

[~, ind_exp] = sort(centr_exp , 'descend ');

disp(ind_exp (1:10))

4346

4382

4337

4333

4353

4396

4385

4374

4348

4403

4 Resolvent centrality

Now let us apply RKFIT for finding a Katz parameter α and the scaling β so that the
resolvent-based centrality is closest to the exponential-based centrality in the 2-norm.
The residue command allows us to easily convert the found ratfun into partial fraction
form, which will have a single term here:

xi = inf; % initial guess for the pole

param = struct('real ', 1, 'maxit ', 5, 'k', -1);

[xi, ratfun , misfit] = rkfit(F, A, b, xi, param);

[beta , xi] = residue(ratfun);

alpha_rkfit = 1/xi;

Let us investigate the error of the type (0,1) best rational approximation to the exponential
centrality vector of exp(A)1 as we vary the parameter α. Note that, for given α, finding
the optimal β such that ‖ exp(A)1 − β(I − αA)−11‖2 is smallest possible amounts to a
linear least squares problem which we can solve by projection:
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rhoA = eigs(A, 1);

Alph = linspace (0.1, 1.05/rhoA , 500);

for j = 1: length(Alph),

res = (speye(size(A)) - Alph(j)*A)\b;

res = res/norm(res);

beta = res '* centr_exp;

best_approx = beta*res;

Dist(j) = norm(centr_exp - best_approx)/norm(centr_exp);

end

figure , plot(Alph , Dist , 'LineWidth ', 1), hold on

plot([ alpha_rkfit , alpha_rkfit], [0, 1], 'r', 'LineWidth ', 1)

plot ([1/rhoA , 1/rhoA], [0, 1], 'k--', 'LineWidth ', 1)

legend('best scaled resolvent ', 'RKFIT parameter ', ...

'1/\rho(A)', 'Location ', 'SouthWest ')

xlabel('Katz parameter \alpha '), axis tight
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We note that RKFIT has done a very good job in locating the minimum, called αrkfit.
Moreover, we find that αrkfit also satisfies the condition on the Katz parameter to be
smaller than 1/ρ(A).

Another approach for choosing α has been suggested in [1]. There the aim was to minimize
the distance between the two unscaled centrality vectors ‖ exp(A)1 − (I−αA)−11‖2 (i.e.,
β = 1). The authors recommend a value for the Katz parameter αmin depending on the
largest eigenvalue ρ(A) of the adjacency matrix, αmin = (1 − exp(−ρ(A))/ρ(A). For our
power network the values αmin and αrkfit are very close:

alpha_min = (1 - exp(-rhoA))/rhoA;

disp([ alpha_min , alpha_rkfit ])
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1.3356e-01 1.3162e-01

Here are the 15 highest ranked nodes using the exponential centrality measure and the
resolvent centrality measures obtained using the parameters αrkfit chosen by RKFIT and
αmin suggested in [1]:

centr_rkfit = (speye(size(A)) - alpha_rkfit*A)\b;

[~, ind_rkfit] = sort(centr_rkfit , 'descend ');

centr_min = (speye(size(A))-alpha_min*A)\b;

[~, ind_min] = sort(centr_min , 'descend ');

[ (1:15) ', ind_exp (1:15) , ind_rkfit (1:15) , ind_min (1:15) ]

ans =

1 4346 4382 4382

2 4382 4346 4346

3 4337 4337 4337

4 4333 4333 4333

5 4353 4353 4353

6 4396 4385 4385

7 4385 4403 4403

8 4374 4348 4348

9 4348 4396 4396

10 4403 4374 4374

11 4362 4362 4399

12 4399 4399 4362

13 4402 4402 4402

14 4414 4414 4414

15 4409 4409 4409

Both parameters provide a good resolvent-based match to the exponential centrality. In
fact, the nodes ranked in the top 10 using the resolvent are the same with αrkfit and αmin.
The first difference between these two is in the 11-th and 12-th nodes which swap their
positions when αmin is used.

Finally, let us plot again the graph with the nodes being coloured according to the RKFIT-
based centralities. Blue color indicates nodes of low centrality, and nodes with high
centrality are plotted in magenta. The sizes of the nodes reflect their degrees.

figure

deg = degree(G);

plot(G, 'MarkerSize ', 2*log(deg +1), ...

'NodeCData ', log(centr_rkfit), ...

'LineWidth ', 1, 'EdgeColor ', [0, 0, 0]);

colormap(cool)

axis ([-5.7, 7.5, -7, 6.5]), axis off
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