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1 Introduction

We consider the problem of finding eigenvalues λ ∈ Σ and nonzero eigenvectors x of a
nonlinear eigenvalue problem (NLEP)

A(λ)x = 0 .

Here Σ is a compact target set in the complex plane and A(λ) is a family of n × n
matrices depending analytically on λ. A popular approach for solving such problems is
to approximate A(λ) by a polynomial or rational eigenvalue problem of the form

QN(λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN(λ)DN ,

where the Dj are n × n matrices, and the bj are polynomials or rational functions in λ.
Provided that the bj can be generated by a linear recursion, the problem QN(λ)x = 0
can be ”linearised” into a linear pencil (AN , BN) of size Nn×Nn, which in practice can
be rather large depending on N and n.

2 The NLEIGS linearisation

The NLEIGS linearisation [3] is based on rational interpolation, with the bj chosen as
rational basis functions of the form

b0(λ) = 1, bj+1(λ) =
(λ− σj)

βj+1(1− λ/ξj+1)
bj(λ).
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Here, the σj are interpolation nodes on the boundary of Σ, and the ξj are poles which
can be chosen freely, for example all at infinity (which leads to a polynomial interpolant)
or on a singularity set Ξ of A(λ). The advantage of employing an interpolation-based
approximation QN(λ) is that the matrices Dj can be obtained solely by sampling A(σj),
provided that the nodes σj are distinct. For more details we refer to [3, Section 2.1].

The numbers βj are scaling factors which, as suggested in [3], are chosen so that
max
λ∈Σ
|bj(λ)| ≈ 1. This scaling has the advantage that the norms ‖Dj‖F give an indication

of the approximation accuracy of QN(λ) for A(λ); see [3, Section 4] for more details.

3 Leja-Bagby sampling

To obtain a computationally efficient method it is desirable that QN(λ) ≈ A(λ) is a good
approximation for all λ ∈ Σ with a small degree parameter N . This suggests to use an
(asymptotically) optimal rational interpolation procedure and we propose to choose the
(σj, ξj) as Leja-Bagby points on (Σ,Ξ) [1, 9].

More precisely, choosing σ0 ∈ Σ arbitrarily, we define the nodes σj and poles ξj so that
the following conditions are satisfied:

max
λ∈Σ
|sj(λ)| = |sj(σj+1)|, min

λ∈Ξ
|sj(λ)| = |sj(ξj+1)|,

with the nodal functions sj defined as sj(λ) =
(λ− σ0) · · · (λ− σj)
(λ− ξ1) · · · (λ− ξj)

.

4 The Gun problem

We now demonstrate the above with an example taken from the problem collection [2].
We use the so-called gun problem, which is a model of a radio-frequency gun cavity [5].
The corresponding NLEP is

A(λ)x = [K − λM + i
√
λW1 + i

√
λ− 108.87742W2]x = 0 ,

where K,M,W1,W2 are sparse 9956× 9956 matrices. Let us define a function handle to
the NLEP.

if exist('nlevp ') ~= 2

disp('Function nlevp.m not found. Can be downloaded from:')

disp(['http :// www.maths.manchester.ac.uk/our -research/research

-groups ' ...

'/numerical -analysis -and -scientific -computing/numerical -

analysis/' ...

'software/nlevp/'])

return

end

[coeffs , fun] = nlevp('gun');

n = size(coeffs {1}, 1);

A = @(lam) 1* coeffs {1} - lam*coeffs {2} + ...

1i*sqrt(lam)*coeffs {3} + ...

1i*sqrt(lam -108.8774^2)*coeffs {4};
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The target set Σ for this problem is an upper-half disk with center 62500 and radius 50000.
Note that the definition of A(λ) involves two branch cuts (−∞, 0] and (−∞, 108.87742]
caused by the square roots, and the union of these two is a good choice for the singularity
set Ξ.

We can now use the utility function util nleigs to sample the NLEP on the target set Σ
using poles from the singularity set Ξ. The function requires as inputs a function handle
to A(λ), the vertices of Σ and Ξ represented by polygons, a tolerance for the sampling
procedure, and the maximal number of terms.

Nmax = 50;

Sigma = 62500 + 50000* exp(1i*pi*[1, linspace(0, 1)]);

Xi = [-inf , 108.8774^2];

tol = 1e-15;

QN = util_nleigs(A, Sigma , Xi , tol , Nmax);

disp(QN)

RKFUNM object of size 9956-by -9956 and type (32, 31).

Complex sparse coefficient matrices of size 9956-by

-9956.

Complex -valued Hessenberg pencil (H, K) of size 33-by

-32.

As we can see, the output of util nleigs is an RKFUNM object QN representing QN(λ),
a rational matrix-valued function which interpolates A(λ) at the nodes σj (i.e., QN(σj) =
A(σj) for all j = 0, 1, . . . , N). We can evaluate QN at any point z in the complex plane
by typing QN(z). The linearize function can be used to convert QN into an equivalent
linear matrix pencil structure LN(z) = AN − zBN with the same eigenvalues as QN .
Via LN we can also access the norms ‖Dj‖F of the matrices Dj in the expansion of QN .
Apparently, a degree of N = 32 was sufficient to represent A(λ) to accuracy tol = 10−15:

LN = linearize(QN);

figure (1), semilogy (0:LN.N, LN.nrmD/LN.nrmD (1), 'r-'), grid on

legend('relative Frobenius norm of D_j'); xlabel('j')

axis([0, LN.N, 1e-16, 1])
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Luckily this N = 32 is quite small due to the Leja-Bagby sampling strategy employed by
util nleigs. However, the full linearisation matrices (AN , BN) are of size Nn×Nn and
hence quite large. Here is a spy plot of (AN , BN).

[AN,BN] = LN.get_matrices ();

figure (2)

subplot (1,2,1), spy(AN), title('A_N')

subplot (1,2,2), spy(BN), title('B_N')

The LN structure provides two function handles multiply and solve, which can be used
by the rat krylov function to compute a rational Krylov basis for (AN , BN) without
forming these matrices explicitly [7, 8]. For the rational Arnoldi algorithm we choose,
rather arbitrarily, 5 cyclically repeated shifts in the interior of Σ.
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shifts = [9.6e+4, 7.9e+4+1.7e+4i, 6.3e+4, 4.6e+4+1.7e+4i, 2.9e

+4];

Let us first plot the target set, the sampling points σj, the poles ξj, and the shifts of the
rational Krylov space:

figure (3)

fill(real(sqrt(Sigma)), imag(sqrt(Sigma)), [1 1 .6])

hold on

plot(sqrt(LN.sigma), 'gx', 'Color ', [0 .5 0])

plot(sqrt(LN.xi(LN.xi >0))+1i*eps , 'r.', 'MarkerSize ', 14)

plot(sqrt(shifts), 'mo')

xlabel('Re sqrt(lambda)'), ylabel('Im sqrt(lambda)')

legend('target set \Sigma ', 'interpolation nodes \sigma_j ', ...

'poles \xi_j ', 'RK shifts ', 'Location ', 'NorthWest ')

axis ([0 ,350 , -10 ,110])
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The computation of the rational Arnoldi decomposition ANVm+1Km = BNVm+1Hm is
conveniently performed by providing the pencil structure LN as the first input argument
to the rat krylov function. Here, m = 70 and the starting vector is chosen at random.

Note: The shifts in this example are cyclically repeated and the solve function provided
in the LN structure attempts to reuse LU factors of n×n matrices whenever possible. The
five LU factors required for this example are stored automatically as persistent variables
within the solve function.

v = randn(LN.N*n, 1);

shifts = repmat(shifts , 1, 14);

[V, K, H] = rat_krylov(LN, v, shifts , struct('waitbar ', 1));
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From the rational Arnoldi decomposition we can easily compute the Ritz pairs for the
linearisation (AN , BN). In the following we extract the Ritz values in the interior of Σ
and find, consistently with [3], that there are 21 Ritz values. The leading n elements of
the corresponding Ritz vectors (normalised to unit norm) are then approximations to the
eigenvectors x of A(λ).

[X, D] = eig(H(1:end -1, :), K(1:end -1, :));

ritzval = diag(D);

ind = inpolygon(real(ritzval), imag(ritzval), ...

real(Sigma), imag(Sigma));

ritzval = ritzval(ind);

ritzvec = V(1:n, 1:end)*(H*X(:, ind));

ritzvec = ritzvec/diag(sqrt(sum(abs(ritzvec).^2)));

disp(length(ritzval))

21

Let us compute the nonlinear residual norm ‖A(λ)x‖2 for all 21 Ritz pairs (λ,x ):

res = arrayfun(@(j) norm(A(ritzval(j))*ritzvec(:, j), 'fro'),

...

1: length(ritzval));

figure (4)

semilogy(res , 'b-o'), xlim([1, length(res)])

legend('residual norm of Ritz pairs ')

xlabel('index of Ritz pair '), hold on

2 4 6 8 10 12 14 16 18 20

index of Ritz pair

10-10

10-8

10-6

10-4

10-2

residual norm of Ritz pairs

We find that all but 4 Ritz pairs are good approximations to the eigenpairs of the nonlinear
problem. Let us run five more rational Arnoldi iterations by using as shift the mean of
the four nonconverged Ritz values. This can be done by simply extending the existing
rational Arnoldi decomposition.
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% Use mean of Ritz values.

shifts = repmat(mean(ritzval(res >1e-8)), 1, 5);

% Extend the decomposition.

[V, K, H] = rat_krylov(LN, V, K, H, shifts , struct('waitbar ' ,1))

;

Now let us compute the improved Ritz pairs and the corresponding nonlinear residuals
exactly as above:

[X, D] = eig(H(1:end -1, :), K(1:end -1, :));

ritzval = diag(D);

ind = inpolygon(real(ritzval), imag(ritzval), ...

real(Sigma), imag(Sigma));

ritzval = ritzval(ind);

ritzvec = V(1:n, 1:end)*(H*X(:, ind));

ritzvec = ritzvec/diag(sqrt(sum(abs(ritzvec).^2)));

res = arrayfun(@(j) norm(A(ritzval(j))*ritzvec(:, j), 'fro'),

...

1: length(ritzval));

figure (4)

semilogy(res , 'r-o')

legend('residual norm of Ritz pairs ','residual norm (extended)')
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All wanted Ritz pair are now of sufficiently high accuracy and we are done. Finally, here
is a plot of the Ritz values, which coincides with [3, Figure 4(a)]:

figure (3)

plot(sqrt(ritzval), 'b+')
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legend('target set \Sigma ', 'interpolation nodes \sigma_j ', ...

'poles \xi_j ', 'RK shifts ', '21 Ritz values ', ...

'Location ', 'NorthWest ')
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5 Variants and extensions

The linearisation computed by util linearise nlep is referred to as the ”static variant
of NLEIGS” in [3]. The NLEIGS algorithm, which is also available online, supports the
dynamic expansion of the linearisation (AN , BN) as the rational Arnoldi iteration pro-
gresses. This dynamic expansion is inspired by the ”infinite Arnoldi algorithm” presented
in [4]. The CORK algorithm in [8] is a memory-efficient variant of NLEIGS which exploits
the special structure of the Krylov basis vectors Vm+1 associated with (AN , BN).
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