The parallel rational Arnoldi algorithm

Mario Berljafa Stefan Giittel
May 2016

Contents

[1__Introductionl 1
[2 Parallelization strategies| 1
[3 Basic usage| 1
4 Near-optimal continuation strategy| 3
[> Links to numerical examples| 5
6__References| 5

1 Introduction

Since version 2.4 of the RKToolbox, the rat_krylov function can simulate the parallel
construction of a rational Krylov basis. This is done by imposing various nonzero patterns
in a so-called continuation matrix 7. Simply speaking, the j-th column of this matrix
contains the coefficients of the linear combination of j rational Krylov basis vectors which
have been used to compute the next (j + 1)-th basis vector. Therefore T is an upper
triangular matrix.

2 Parallelization strategies

By imposing certain nonzero patters on the continuation matrix 7', we can simulate a
parallel rational Arnoldi algorithm where several linear system solves are performed syn-
chronously. Note that the typically most expensive part in the rational Arnoldi algorithm
is the solution of large linear systems of equations, hence parallelizing this component
can yield significant savings in computation time. There are various continuation strate-
gies (i.e., ways to form the matrix 7'), each with a different numerical behaviour, and
we refer to [1] for an overview. By default, the strategy ruhe is used, which determines
the next admissible continuation vector (column of 7') by computing a QR factorization
of a small matrix [2]. Other available parallelization strategies are last, almost-last,
and near-optimal. The strategy almost-last is the one used by Skoogh [3]. The
near-optimal strategy is the one developed and advocated in [1]. It uses a (cheap)

predictor method to anticipate the direction of the next Krylov basis vector(s) in or-
der to determine a good continuation matrix 7. By ”"good” we mean that the rational
Krylov basis that is orthogonalized is well-conditioned, so that numerical instabilities in
the Gram—Schmidt process are limited.

3 Basic usage

We now demonstrate at a simple example how to use the parallel option in rat_krylov.
Links to the practically relevant examples are given below. First, let us define a matrix
A, a starting vector b, and a sequence of pole parameters, where p = 4 consecutive poles
are pairwise distinct. Having distinct poles is a necessary requirement for parallelization.

load west0479

A = west0479;

b = ones(479,1);

xi = repmat([-50, -25, 25, 50], 1, 4);

Now we can run rat_krylov to compute a rational Arnoldi decomposition AV, K, =
Ving1H,,, with the basis vectors in V;,, 1 being generated in parallel. This is done by
specifying the continuation strategy and the p = 4 parameter:

param = struct('continuation', 'almost-last',
‘P 4,
'orth', 'CGS',
'reorth', 1,
'waitbar', 1);

[V, K, H, out] = rat_krylov(A, b, xi, param);

The other struct fields specify that classical Gram-Schmidt orthogonalization has been
used with reorthogonalization, the columns of the matrix pencil (H,,, Ky,) have been
rescaled in an attempt to improve the numerical conditioning, and a waitbar has been
displayed during the computation. The output parameter out has several fields of interest,
in particular, it returns the continuation matrix being used during the computation. Here
is a spy plot of T

spy (out . T)

10

12

14

16

18 ' ' '
0 5 10 15

nz=16

We can clearly see how Skoogh’s almost-last strategy works: in every parallel cycle,
p = 4 rational Krylov basis vectors are computed, each from the last vector obtained
on the respective parallel process in the previous parallel cycle. The output parameter
out.R corresponds to the R factor in the implicitly computed QR factorization of the
rational Krylov basis. As is explained in much more detail in [1], its condition number is
an indicator for the stability of the computation. We observe that with the almost-last
strategy this condition number is rather high:

R = out.R;

D fminsearch(@(x) cond(Rxdiag(x)), ones(size(R, 2), 1),
struct ('Display','off'));

disp (cond (R*diag(D)))

3.2177e+06

4 Near-optimal continuation strategy

To overcome, or at least reduce, the numerical problems observed with canonical par-
allelization strategies (such as almost-last and last), rat krylov implements the

3

near-optimal strategy suggested in [1]. With this strategy, a (cheap) predictor method
is used to anticipate the direction of rational Krylov basis vectors before their actual
computation, to infer good continuation pairs.

param.continuation = 'mear-optimal';
[V, K, H, out] = rat_krylov(A, b, xi, param);

The continuation matrix 7" has a more dense pattern compared to the almost-last
strategy, but still allows for p = 4 basis vectors to be computed in parallel:

spy Cout . T)

0 .

10

12

14

16

18 ' ' '
0 5 10 15

nz =112

The condition number of the basis being orthogonalized is significantly smaller:

R = out.R;

D fminsearch(@(x) cond(Rxdiag(x)), ones(size(R, 2), 1),
struct ('Display','off'));

disp(cond (R*diag(D)))

5.5275e+00

In fact, this basis is so close to being orthogonal, that running classical Gram-Schmidt
without orthogonalization would be fine. The near-optimal method implemented in
this simple manner is, however, computationally expensive: in fact every linear system
in the rational Arnoldi algorithm has been solved twice using backslash. In a high-
performance implementation one would reuse existing LU factors, or switch to an inexact
predictor method like, e.g., FOM or GMRES. The predictor method is specified by a
function handle in the continuation_solve field and the number of iterations is specified
in continuation m. Demonstrations of this are given in the numerical examples linked
below.

5 Links to numerical examples

The numerical examples in [1] can be reproduced with the following scripts: Numerical
illustration from [1, Sec. 3.4]

TEM example from [1, Sec. 5.1
Inlet example from [1, Sec. 5.2]

Waveguide example from [1, Sec. 5.3]

6 References

[1] M. Berljafa and S. Giittel. Parallelization of the rational Arnoldi algorithm, STAM J.
Sci. Comput., 39(5):S197-5221, 2017.

[2] A. Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matriz
pencils, SIAM J. Sci. Comput., 19(5):1535-1551, 1998.

[3] D. Skoogh. A parallel rational Krylov algorithm for eigenvalue computations, in G.
Goos et al., editors, Applied Parallel Computing, volume 1541 of Lecture Notes in Com-
puter Science, pages 521-526. Springer-Verlag, Berlin, 1998.

Numerical illustration from [1, Sec. 3.4]
Numerical illustration from [1, Sec. 3.4]
TEM example from [1, Sec. 5.1]
Inlet example from [1, Sec. 5.2]
Waveguide example from [1, Sec. 5.3]

	Introduction
	Parallelization strategies
	Basic usage
	Near-optimal continuation strategy
	Links to numerical examples
	References

