
Structure of rational Krylov projections

Mario Berljafa Stefan Güttel
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1 Introduction

Let A be a matrix of size N × N , b an N × 1 vector, and m a positive integer. The
polynomial Krylov space of order m+1 is defined as Km+1(A, b) = span{b, Ab, . . . , Amb}.
For simplicity we assume that Km+1(A, b) is of full dimension m+ 1.

Let Vm+1 be an orthonormal matrix of size N × (m+ 1) such that the leading j columns
Vj form a basis for Kj(A, b) for j = 1, 2, . . . ,m+1. It follows from the implicit Q theorem
that the projection Hm+1 = V ∗

m+1AVm+1 is an upper Hessenberg matrix; that is, all the
elements below the first subdiagonal of Hm+1 are zero. Moreover, if the matrix A is
symmetric so is the projection Hm+1, and hence it is tridiagonal.

Below we visualize the aforementioned structure for a symmetric matrix (the plot on the
left), and for a nonsymmetric matrix (the plot on the right).

N = 200;

m = 20;

% Polynomial Krylov space; infinite poles.

xi = inf(1,m);

% Symmetric matrix.

A = gallery('tridiag ', N);

b = sum(eye(N, 15), 2);

V = rat_krylov(A, b, xi);

T = V'*A*V;

% Nonsymmteric matrix.
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A = gallery('grcar ', N);

V = rat_krylov(A, b, xi);

H = V'*A*V;

figure (1), colormap('summer ')

subplot (121), imagesc(log10(abs(T)))

colorbar , set(gca ,'CLim ' ,[-15,0]); axis square

title('log of the entries of |T|')

subplot (122), imagesc(log10(abs(H)))

colorbar , set(gca ,'CLim ' ,[-15,0]); axis square

title('log of the entries of |H|')

log of the entries of |T|

5 10 15 20

5

10

15

20
-15

-10

-5

0
log of the entries of |H|

5 10 15 20

5

10

15

20
-15

-10

-5

0

The aim of this note is to review the structure of the projection V ∗
m+1AVm+1 of A onto

more general Krylov spaces; namely, rational Krylov spaces Qm+1(A, b, qm), which are
defined in the next section. This structure has been studied, e.g., in [2, 4, 5, 8].

2 Rational Krylov space

Let qm be a polynomial of degree at most m with roots disjoint from the spec-
trum of A. The rational Krylov space Qm+1(A, b, qm) is defined as Qm+1(A, b, qm) =
qm(A)−1span{b, Ab, . . . , Amb}. The roots of qm are called poles of the rational Krylov
space. If qm is a constant nonzero polynomial we recover the polynomial Krylov space.

3 Semiseparable matrices

Let us look at the projection Sm+1 = V ∗
m+1AVm+1 for a symmetric matrix A and Vm+1

forming a basis for Qm+1(A, b, qm) with qm(z) = zm, i.e., a rational Krylov space with all
poles equal to 0.

A = gallery('tridiag ', N) + speye(N);

xi = zeros(1,m);

V = rat_krylov(A, b, xi);

S = V'*A*V;

figure (2), colormap('summer ')

imagesc(log10(abs(S)))

colorbar , set(gca , 'CLim ', [-15, 0]); axis square

title('log of the entries of |S|')
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The projection is not tridiagonal, but it is semiseparable! A semiseparable matrix is
one for which any submatrix consisting of elements in the strictly lower (upper, due to
symmetry in this case) part is of rank at most 1.

disp([rank(S(3:m, 1:2), 1e-15), ...

rank(S(4:m, 1:3), 1e-15), ...

rank(S(7:12, 1:4), 1e-15)])

1 1 1

Note that Sm+1 is nonsingular and its inverse is tridiagonal.

figure (3), colormap('summer ')

imagesc(log10(abs(S\eye(m+1))))

colorbar , set(gca , 'CLim ', [-15, 0]); axis square

title('log of the entries of |inv(S)|')

3



log of the entries of |inv(S)|
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4 Semiseparable plus diagonal matrices

We now consider a more general rational Krylov space, having both finite and infinite
poles. The ordering of the poles is irrelevant for the final space, but the structure of the
projection may change depending on it.

Specifically, we look at a rational Krylov space with m = 12 poles ξj appearing in four
groups. The first group consists of three poles at infinity, the second contains three finite
poles, two infinite poles make the third group, and in the fourth there are four finite poles.
The matrix A is chosen as nonsymmetric.

A = gallery('grcar ', N);

xi = [inf , inf , inf , ...

-20, -10, 80, ...

inf , inf , ...

-20, 80, 80, -50];

The structure of V ∗
m+1AVm+1 is related to the pole groups. Define the diagonal matrix

of poles Dm+1 by setting d1 = 0, and dj+1 = ξj if ξj 6= ∞ or dj+1 = 0 if ξj = ∞, for
j = 1, . . . ,m. Then the matrix Sm+1 = V ∗

m+1AVm+1 −Dm+1 is semiseparable.

[V, K, H] = rat_krylov(A, b, xi);

S = V'*A*V;

D = diag ([0 xi]); D(D == inf) = 0;

S = S - D;
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figure (4), colormap('summer ')

imagesc(log10(abs(S)))

colorbar , set(gca , 'CLim ', [-15, 0]); axis square

title('log of the entries of |S|')
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For each of the four pole groups there is a corresponding submatrix of Sm+1. The sub-
matrices lie on the diagonal of Sm+1 and share 2 × 2 corner(s) with the neighbouring
blocks. The two submatrices corresponding to the two groups with infinite poles are
upper-Hessenberg, and the other two are inverse upper-Hessenberg.

l1 = line([0, 0, 5, 5, 0]+.5, [0, 5, 5, 0, 0]+.5);

l2 = line([3, 3, 8, 8, 3]+.5, [3, 8, 8, 3, 3]+.5);

l3 = line([6, 6, 10, 10, 6]+.5, [6, 10, 10, 6, 6]+.5);

l4 = line([8, 8, 13, 13, 8]+.5, [8, 13, 13, 8, 8]+.5);

set([l1 ,l2 ,l3 ,l4],'LineWidth ' ,3)

set(l1 ,'Color ','r'), set(l2 ,'Color ','g')

set(l3 ,'Color ','m'), set(l4 ,'Color ','b')

set(gca , 'XTick ', 1:13,'YTick ' ,1:13)
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In the following plot we show the inverses of the second and fourth block, to confirm that
they are indeed upper Hessenberg matrices.

figure (5), colormap('summer ')

subplot (121)

imgsci = @(X, ii) imagesc(log10(abs(X(ii , ii)\eye(length(ii)))))

;

imgsci(S, 4:8), set(gca ,'CLim ' ,[-15,0]); axis square

set(gca ,'XTick ' ,1:5,'XTickLabel ' ,4:8,'YTick ' ,1:5,'YTickLabel '

,4:8)

title('|inv(S(4:8, 4:8))|')

subplot (122)

imgsci(S, 9:13) , set(gca ,'CLim ' ,[-15,0]); axis square

set(gca ,'XTick ' ,1:5,'XTickLabel ' ,9:13,'YTick ' ,1:5,'YTickLabel '

,9:13)

title('|inv(S(9:13 , 9:13))|')
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|inv(S(4:8, 4:8))|
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We now relocate the poles of the above rational Krylov space, as described in [1], and
visualize the semiseparable structure. We take 6 groups of poles and can spot the corre-
sponding overlapping upper-Hessenberg and inverse upper-Hessenberg blocks.

xi_new = [-20, -30, ...

inf , inf , inf , ...

-30, -20, ...

inf , inf , ...

-30, ...

inf , inf];

D_new = diag ([0 xi_new ]); D_new(D_new == inf) = 0;

[~, ~, Q] = move_poles_expl(K, H, xi_new);

S = Q*(S+D)*Q'-D_new;

figure (6), colormap('summer ')

imagesc(log10(abs(S))), colorbar , set(gca , 'CLim ', [-15, 0]);

axis square , title('log of the entries of |S|')
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The connection between rational Krylov spaces and semiseparable (plus diagonal) ma-
trices has been used, for instance, for the development of short recurrences in rational
quadrature rules, see e.g. [3, 6] and the references given therein. In [4, 5] the authors used
it to approximate a rational Krylov space from a larger polynomial Krylov space. The
examples shown here are for rather small matrices and low-dimensional rational Krylov
spaces. For larger examples the semiseparable structure is often obscured by numerical
roundoff and not reliably exploited, which is one of the reasons we prefer to work with
the upper-Hessenberg representations for rational Krylov spaces, see e.g. [1, 7].

The following command is used to create a thumbnail.

figure (4), colorbar off , axis square , axis off
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[1] M. Berljafa and S. Güttel. Generalized rational Krylov decompositions with an appli-
cation to rational approximation, SIAM J. Matrix Anal. Appl., 36(2):894–916, 2015.

[2] D. Fasino. Rational Krylov matrices and QR steps on Hermitian diagonal-plus-
semiseparable matrices, Numer. Linear Algebra Appl., 12(8):743–754, 2005.

[3] C. Jagels and L. Reichel. Recursion relations for the extended Krylov subspace method,
Linear Algebra Appl., 434(7):1716–1732, 2011.

[4] T. Mach, M. Pranic, and R. Vandebril. Computing approximate extended Krylov
subspaces without explicit inversion, Electron. Trans. Numer. Anal., 40:414–435, 2013.

[5] T. Mach, M. Pranic, and R. Vandebril. Computing approximate (block) rational
Krylov subspaces without explicit inversion with extensions to symmetric matrices, Elec-
tron. Trans. Numer. Anal., 43:100–124, 2014.

[6] M. Pranic and L. Reichel. Rational Gauss quadrature, SIAM J. Numer. Anal.,
52(2):832–851, 2014.

9



[7] A. Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix
pencils, SIAM J. Sci. Comput., 19(5):1535–1551, 1998.

[8] M. Van Barel, D. Fasino, L. Gemignani, and N. Mastronardi. Orthogonal rational
functions and structured matrices, SIAM J. Matrix Anal. Appl., 26(3):810–829, 2005.

10


	Introduction
	Rational Krylov space
	Semiseparable matrices
	Semiseparable plus diagonal matrices
	References

