
Computing with rational functions

Mario Berljafa Stefan Güttel

May 2015

Contents

1 Introduction 1

2 Evaluating an rkfun 2

3 Plotting 2

4 Pole- and root-finding 4

5 Basic arithmetic operations and differentiation 5

6 Multiple precision computations 6

7 Conversion to partial fraction form 7

8 Conversion to quotient and continued fraction form 7

9 References 9

1 Introduction

This toolbox comes with an implementation of a class called rkfun, which is the funda-
mental data type to represent and work with rational functions. Objects of this class are
produced by the rkfit function (described in [2,3]), which in its simplest use case attemts
to find a rational function r such that

‖Fb − r(A)b‖2 → min,

where A,F are square matrices and b is a vector of compatible sizes. For example, let us
consider A = tridiag(−1, 2,−1), b = [1, 0, . . . , 0]T , and F = (A−2I)2(A2−I)−1(A−4I)−1.
We know that r(z) = (z − 2)2(z2 − 1)−1(z − 4)−1 is a minimizer for the above problem.
Let us try to find it via RKFIT:

N = 100;

A = gallery('tridiag ', N);

I = speye(N);

F = (A - 4*I)\(A - 2*I)^2/(A^2 - I);

b = eye(N,1);

1

xi = inf(1, 5);

[xi,ratfun ,misfit] = rkfit(F, A, b, xi, 5, 1e-10, 'real ');

As we started with m = 5 initial poles (at infinity), RKFIT will search for a rational
function r of type (5, 5). When more than 1 iteration is performed and the tolerance tol

is not chosen too small, RKFIT will try to reduce the type of the rational function while
still maintaining a relative misfit below the tolerance, i.e., ‖Fb − r(A)b‖2 ≤ tol‖Fb‖2.
Indeed, a reduction has taken place and the type has been reduced to (2, 3), as can be
seen from the following output:

disp(ratfun)

RKFUN object of type (2, 3).

Real -valued Hessenberg pencil (H, K) of size 4-by -3.

coeffs = [-0.087, -0.394, -1.331, -1.503]

We can now perform various operations on the ratfun object, all implemented as methods
of the class rkfun. To see a list of all methods just type help rkfun. We will now discuss
some methods in more detail.

2 Evaluating an rkfun

We can easily evaluate r(z) at any point (or many points) in the complex plane. The
following command will evaluate r(2) and r(3 + i) simultaneously:

disp(ratfun ([2; 3+1i]))

-1.2226e-14 + 0.0000e+00i

1.1765e-02 - 1.5294e-01i

We can also evaluate r as a matrix function, i.e., computing r(M)B for matrices M and
B, by using two input arguments. For example, by setting B = I we effectively compute
the full matrix function r(M):

M = [3, 1; 0, 3];

B = eye(2);

R = ratfun(M, B)

R =

-1.2500e-01 -2.8125e-01

0 -1.2500e-01

3 Plotting

As r can be evaluated at any point in the complex plane, it is straightforward to produce
plots of this function. For example, here is a contour plot of log10 |r| over the complex
region [−2, 5]× [−1, 1]i:

2

figure (1)

[X,Y] = meshgrid (-2:.01:5 , -1:.01:1);

Z = X + 1i*Y;

R = ratfun(Z);

contourf(X, Y, log10(abs(R)), -4:.25:2)

colormap hot , colorbar

The following plot shows the phase portrait of r on the same domain. Can you spot the
three poles and a double root?

figure (3)

contourf(X, Y, angle(R), 20)

set(gca ,'CLim ',[-pi ,+pi])

colormap(util_colormapc (1, 90));

colorbar

3

Another command ezplot can be used to get a quick idea of how ratfun looks over an
interval on the real axis, in this case, [−2, 5]:

figure (2)

ezplot(ratfun , [-2, 5])

ylim([-5, 5])

grid on

-2 -1 0 1 2 3 4 5
-5

0

5

4 Pole- and root-finding

From the above plot we guess that r has poles at x = ±1 and x = 4 and a root at x = 2,
which is to be expected from the definition of r. The two commands poles and roots do

4

exactly what their names suggest:

pls = poles(ratfun)

rts = roots(ratfun)

pls =

-1.0000e+00

1.0000e+00

4.0000e+00

rts =

2.0000e+00 + 2.7597e-07i

2.0000e+00 - 2.7597e-07i

As expected from a type (2,3) rational function, there are two roots and three poles.
Note that the pole at x = −1 is identified with slightly less accuracy than the poles at
x = 1 and x = 4. This is because the point x = −1 is outside the spectral interval of
A and hence sampled less accurately. Also the double root at x = 2 is identified up to
an accuracy of ≈ 10−7 only. This is not surprising as the function is flat nearby multiple
roots. However, the backward error of the roots is small:

disp(ratfun(rts))

4.9960e-16 + 1.0588e-22i

4.9960e-16 - 1.0588e-22i

5 Basic arithmetic operations and differentiation

We have implemented some very basic operations for the rkfun class, namely, the multi-
plication by a scalar and the addition of a scalar. The result of such operations is again an
rkfun object. For example, the following command computes points z where 2r(z) = π:

z = roots (2* ratfun - pi)

disp(ratfun(z))

z =

-4.0504e-01

8.5769e-01

1.5708e+00

1.5708e+00

We have currently not implemented the summation and multiplication of two rkfun

objects, though this is doable in principle. —UPDATE: This is no longer the case
since Version 2.2 of the toolbox. Check out the example on ”Electronic filter
design using RKFUN arithmetic”.— However, we can already differentiate a rational
function using the diff command. The following will find all real local extrema of r by
computing the real roots of r′:

extrema = roots(diff(ratfun),'real ')

5

extrema =

4.0759e-01

2.0000e+00

There are two real extrema which we can add to the above plot of r:

figure (2), hold on

plot(extrema , ratfun(extrema), 'ro')

-2 -1 0 1 2 3 4 5
-5

0

5

The syntax and ”feel” of these computations is inspired by the Chebfun system [4], which
represents polynomials via Chebyshev interpolants and allows for many more operations to
be performed than our rkfun implementation. Here we are representing rational functions
through their coefficients in a discrete-orthogonal rational function basis. Working with
rational functions poses some challenges not encountered with polynomials. For example,
the indefinite integral of a rational function is not necessarily a rational function but may
contain logarithmic terms.

6 Multiple precision computations

Objects of class rkfun can be converted to MATLAB’s Variable Precision Arithmetic
(VPA) as follows:

disp(vpa(ratfun))

RKFUN object of type (2, 3).

Real -valued Hessenberg pencil (H, K) of size 4-by -3.

Variable precision arithmetic (VPA) activated.

coeffs = [-0.087, -0.394, -1.331, -1.503]

6

Alternatively, we can also use the Advanpix Multiple Precision (MP) toolbox [1], which
is typically more efficient and reliable than VPA. We recommend the use of this toolbox
in particular for high-precision root-finding of rkfun’s and conversion to partial fraction
form:

ratfun = mp(ratfun)

ratfun =

RKFUN object of type (2, 3).

Real -valued Hessenberg pencil (H, K) of size 4-by -3.

Multiple precision arithmetic (ADVANPIX) activated.

coeffs = [-0.087, -0.394, -1.331, -1.503]

When evaluating a multiple precision ratfun, the result will be returned in multiple pre-
cision:

format longe

ratfun (2)

ans =

-1.2125294919816719385880796519441591e-14

It is important to understand that, although the evaluation of ratfun is now done in
multiple precision, the computation of ratfun using the rkfit command has been per-
formed in standard double precision. rkfit does not currently support the computation
of rkfun objects in multiple precision. Here are the roots of ratfun computed in multiple
precision:

roots(ratfun)

ans =

Columns 1 through 1

2.00000000000005884325215506037004691e+00 +

2.69725359428640320019961191862469502e-07i

2.00000000000005884325215506037004691e+00 -

2.69725359428640320019961191862469502e-07i

7 Conversion to partial fraction form

It is often convenient to convert a rational function r into its partial fraction form

r(z) = α0 +
α1

z − ξ1
+ · · ·+ αm

z − ξm
.

The residue command of our toolbox performs such a conversion. Currently, this only
works when the poles ξj of r are distinct and r is not of superdiagonal type (i.e., there is
no linear term in r). As the conversion to partial fraction form can be an ill-conditioned
transformation, we recommend to use residue in conjunction with the multiple precision
feature. Here are the poles ξj and residues αj (j = 1, . . . ,m), as well as the absolute term
α0, of the function r defined above:

7

[alpha , xi, alpha0 , cnd] = residue(mp(ratfun));

double ([xi , alpha])

double(alpha0)

ans =

-9.999999999999628e-01 8.999999999998803e-01

9.999999999999993e-01 -1.666666666666714e-01

3.999999999999999e+00 2.666666666666091e-01

ans =

-1.749809464778146e-17

The absolute term is close to zero because r is of subdiagonal type. The output cnd of
residue corresponds to the condition number of the transformation to partial fraction
form. In this case of a low-order rational function with well separated poles the condition
number is actually quite moderate:

cnd

cnd =

5.615057038451497e+01

8 Conversion to quotient and continued fraction

form

Our toolbox also implements the conversion of a rkfun to quotient form r = p/q with two
polynomials p and q given in the monomial basis. As with the conversion to partial fraction
form, we recommend performing this transformation in multiple precision arithmetic due
to potential ill-conditioning. Here we convert r into the p/q form and evaluate it at the
root x = 2 using MATLAB’s polyval command:

[p,q] = poly(double(ratfun));

polyval(p, 2)./ polyval(q, 2)

ans =

-1.273055734903527e-14

A rkfun can also be converted into continued fraction form

r(z) = h0 +
1

ĥ1 +
1

h1 +
1

ĥ2 + · · ·+
1

hm−1 +
1

ĥmz +
1

hm

as follows:

8

[h, hhat , absterm , cnd] = contfrac(mp(ratfun));

That’s it for this tutorial. Note that more methods will be added over time and we’d
be happy to receive any feedback or bug reports. For more details about the internal
representation of rkfun, see [3].

The following command creates a thumbnail.

figure (3), hold on, plot(NaN)

9 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, ver 4.3.3.12213,
Tokyo, Japan, 2017. http://www.advanpix.com/.

[2] M. Berljafa and S. Güttel. Generalized rational Krylov decompositions with an appli-
cation to rational approximation, SIAM J. Matrix Anal. Appl., 36(2):894–916, 2015.

[3] M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational approximation,
SIAM J. Sci. Comput., 39(5):A2049–A2071, 2017.

[4] T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide, Pafnuty Publications,
Oxford, 2014. http://www.chebfun.org

9

http://www.advanpix.com/
http://www.chebfun.org

	Introduction
	Evaluating an rkfun
	Plotting
	Pole- and root-finding
	Basic arithmetic operations and differentiation
	Multiple precision computations
	Conversion to partial fraction form
	Conversion to quotient and continued fraction form
	References

