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1 Introduction

This example relates to the modeling of a transient electromagnetic field in a geophysical
application [2]. We consider here the first test problem in [2, Sec 5.1], the discretization
of a layered half space using Nedelec elements of order 1. We are given a symmetric
positive semidefinite matrix A and a symmetric positive definite matrix B, both of order
N = 27623, and the task is to solve an initial value problem

Be ′(t) + Ae(t) = 0 , e(0) = b,

for the electric field e(t). The time parameters of interest are t ∈ T = [10−6, 10−3]. First
let us load the matrices A and B, and the initial vector b:

if exist('tem.mat') ~= 2

disp('File tem.mat not found. Can be downloaded from:')

disp('http :// guettel.com/tem/TEM27623.mat') % TEM152078.mat

return

end

load tem

A = Problem.C; B = Problem.M; b = B\Problem.q;

N = size(A,1);
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2 Rational Arnoldi approximation

The approach suggested in [2] is to build a B-orthonormal rational Krylov basis Vm+1

of Qm+1(B
−1A, b, qm), where B−1A is never formed explicitly, and to extract Arnoldi

approximants

fm(t) = ‖b‖BVm+1 exp(−tAm+1)e1, Am+1 = V T
m+1AVm+1

for all desired time parameters t ∈ T . Here ‖b‖B = (bTBb)1/2. Following [2, Table 1] we
use p = 4 mutually distinct poles each repeated cyclically 9 times, resulting in a rational
Krylov space of order m = 36.

p = 4; rep = 9;

Xi = [-2.76e+04 ,-4.08e+04 ,-2.45e+06 ,-6.51e+06];

3 Sequential reference solution

The problem is large enough so that using MATLAB’s expm is impractical for obtaining
an accurate reference solution. We therefore run the Arnoldi method with the above poles
for a few more cycles to obtain a high-order rational Arnoldi decomposition.

xi = repmat(Xi , 1, rep +9);

ip = @(x,y) y'*B*x;

b = b/sqrt(ip(b, b));

param = struct('continuation ', 'ruhe ', ...

'orth ', 'MGS', ...

'reorth ', 1, ...

'waitbar ', 1, ...

'inner_product ', ip);

[V, K, H, out] = rat_krylov(A, B, b, xi, param);

We now use the basis V to extract the high-order Arnoldi approximants, which we consider
as the ”exact” reference solution:

Am = V'*A*V;

t = logspace(-6, -3, 31);

for j = 1: length(t)

exact(:, j) = V*(expm(-t(j)*Am)*eye(size(Am, 1), 1));

end

4 Parallel Arnoldi variants

Since version 2.4 of the RKToolbox, the rat krylov function can simulate the parallel
construction of a rational Krylov basis. This is done by imposing various nonzero patterns
in the so-called ”continuation matrix” T [1]. Simply speaking, the j-th column of this
matrix contains the coefficients of the linear combination of j rational Krylov basis vectors
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which have been used to compute the next (j+1)-th basis vector. It is therefore an upper
triangular matrix. The following experiment tests and compares three different continu-
ation strategies, including the ”near-optimal” strategy proposed in [1]. This strategy is
tested for both p = 1 (sequential case) and p = 4. The other strategies almost-last

and last are tested for p = 4. The predicting method is FOM(5), i.e., five iterations of
the full orthogonalisaton method are used to predict the next Krylov basis vectors before
actually computing them. The displayed quantities are indicators for the accuracy of the
computed rational Arnoldi decomposition, and they are explained in details in [1]. The
numbers should be comparable to this in Table 5.1 in [1]. Generally, smaller numbers are
better. We also show the sparsity patterns of the various continuation matrices T .

xi = repmat(Xi , 1, rep);

m = length(xi);

strat = {'near -optimal ', 'near -optimal ', 'almost -last ', 'last '};

ucf = @(AB , nu , mu , x, param) ...

util_continuation_fom(AB, nu, mu, x, param);

param.orth = 'CGS';

param.reorth = 0;

param.continuation_m = 5;

param.continuation_root = inf;

param.continuation_solve = ucf;

for s = 1: length(strat)

if s == 1

p = 1; disp(['Sequential strategy ' strat{s}])

else

p = 4; disp(['Parallel strategy ' strat{s}])

end

param.p = p;

param.continuation = strat{s};

[V, K, H, out] = rat_krylov(A, B, b, xi, param);

% Continuation matrix.

figure (1), subplot(1, 4, s)

spy(out.T), axis ij , title(strat{s})

% Numerical quantities (cf. [1, Table 5.1]).

BV = B*V; AV = A*V; S = B\AV; S = S-V*(V\S); ss = svd(S);

R = out.R;

D = fminsearch(@(x) cond(R*diag(x)), ones(size(R, 2), 1), ...

struct('Display ','off'));

nrm = norm(ip(V,V) - eye(size(V,2)));

fprintf(' Cond number (scaled): %.3e\n', cond(R*diag(D)))

fprintf(' Orthogonality check: %.3e\n', nrm)

fprintf(' sigma_2/sigma_1: %.3e\n\n', ss(2)/ss(1))

% Arnoldi approximations.
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Am = V'*A*V; t = logspace(-6, -3, 31);

for j = 1: length(t)

appr = V*(expm(-t(j)*Am)*eye(size(Am , 1), 1));

d = appr - exact(:,j);

err(j,s) = sqrt(ip(d,d));

end

end

Sequential strategy near -optimal

Cond number (scaled): 7.531e+00

Orthogonality check: 1.019e-14

sigma_2/sigma_1: 3.843e-15

Parallel strategy near -optimal

Cond number (scaled): 9.122e+02

Orthogonality check: 1.306e-05

sigma_2/sigma_1: 2.937e-14

Parallel strategy almost -last

Cond number (scaled): 2.544e+18

Orthogonality check: 1.596e+01

sigma_2/sigma_1: 5.580e-07

Parallel strategy last

Cond number (scaled): 1.289e+06

Orthogonality check: 3.552e-01

sigma_2/sigma_1: 2.663e-14
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Finally, we show the absolute errors of the Arnoldi approximants depending on the time
paramter t. By construction in [2], these errors are guaranteed to satisfy ‖e(t)−fm(t)‖B ≤
6.74× 10−8 for all t ∈ T , independent of the spectral interval of (A,B):

figure (2), loglog(t, err), legend(strat)

title('Arnoldi approximants to exp(-tA)b')

xlabel('time t'), ylabel('M-norm error ')

axis ([1e-6, 1e-3, 1e-12, 1e-4])
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We clearly see that both the strategies last and almost-last suffer from numerical
instability, whereas the near-optimal strategy works well both in the sequential and
parallel case.

5 Links to other examples

Here is a list of other numerical illustrations of parallelization strategies: Overview of the
parallelization options

Numerical illustration from [1, Sec. 3.4]

Inlet example from [1, Sec. 5.2]

Waveguide example from [1, Sec. 5.3]
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