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1 Introduction

This example reproduces Example 3.5.4 in [2], and the example in Section 7.1 in [1],
using the RKFUNB framework. Multivariate time series arise in a variety of applications
including Econometrics, Geophysics, and industrial processing. The simplest type of
time series model uses linear relations between the series values at successive time steps.
Suppose that yt (of size 1× s) collects the values of s time series at timestep t, then using
a finite number p of past values, the vector autoregessive model VAR(p) is given by

yt = µ+ yt−1C1 + · · ·+ yt−pCp,

where C1, . . . , Cp are matrices of size s × s and µ is an 1 × s vector of means. We can
evaluate the quality of the model by comparing the observed values to predicted values; see
[2] for details. Consider the seasonally adjusted West German fixed investment, disposable
income, and consumption expenditures from File E1 associated with [2]. Together these
form multivariate time series y on which we perform vector autoregression. We start by
importing the data and viewing the time series.

if exist('e1.dat.txt') ~= 2

disp(['The required matrix for this problem can be ' ...

'downloaded from http ://www.jmulti.de/data_imtsa.html '

]);

return

end

import = importdata('e1.dat.txt');

y = import.data;

plot(y)

title('West German Investment data ')

legend('fixed investment ', 'disposable forecast ', 'consumption

expenditure ' ,...

'Location ', 'northwest ')
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Before estimating a VAR(p) model, we need to make the time series stationary. Here
this can be achieved by taking first-order differences of the logarithms of the data and
then mean-centering. To coincide with Example 3.5.4 in [2], we also truncate the first p
samples of the time series before estimating the mean. For this example, we choose p = 2.

y = diff(log(y));

orig_y = y;

y = y(1:75 , :);

mu = mean(y(3:end ,:));

y = y - ones(length(y) ,1)*mu;

plot(y), title('Adjusted data ')

legend('fixed investment ', 'disposable forecast ', 'consumption

expenditure ')
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2 VAR via block Krylov techniques

We now use least squares approximation to find the coefficients C1, . . . , Cp of the vector
autoregressive model. That is, we solve the minimization problem

min
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With the shift matrix

A =
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0

 ,

we can simulate the time evolution as left-multiplications of the N × s time series block
vector y by A:
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The above minimization problem can hence be reformulated in terms of A and y , provided
we define a bilinear form to trunate the last p elements of the vectors. Let D = diag
(1, . . . , 1, 0, . . . , 0) and ‖x‖D = ‖Dx‖2, then our minimization problem can be written as

min ||Apy − Ap−1yC1 − · · ·yCp||D.

This problem is solved implicitly by the block rational Arnoldi method during the con-
struction of v3, the third block vector in the block-orthonormal rational Krylov basis.
Furthermore, the resulting VAR(2) model can be represented as an RKFUNB object:

3



A = spdiags ([zeros(size(y,1) ,1),ones(size(y,1) ,1)],0:1,size(y,1)

,size(y,1));

xi_ = inf*ones(1, 2);

D = zeros (75 ,75); D(1:73 , 1:73) = eye (73);

param.balance = 0;

param.inner_product = @(x, y) y'*D*x;

[V, K, H, out] = rat_krylov(A, y, xi_ , param);

R = out.R(1:3, 1:3);

C = {zeros (3), zeros (3), H(7:9, 4:6)*H(4:6, 1:3)*R};

r_ = rkfunb(K, H, C)

r_ =

RKFUNB object of block size 3-by -3 and type (2, 2).

Real -valued Hessenberg pencil (H, K) of size 9-by -6.

Real dense coefficient matrices of size 3-by -3.

Using the VAR(2) model, we can construct one-step predictions by evaluating the RK-
FUNB at a smaller version of the finite shift matrix and the last two entries of the time
series. The first step in the block rational Arnoldi method is to construct the QR fac-
torisation of the initial block vector y . Before evaluating the RKFUNB, we reverse this
process by multiplying on the right by R−1.

Ahat = [0, 1; 0, 0];

yhat = y(end -1: end , :);

pred1 = -r_(Ahat , yhat/R);

prediction_1 = pred1(end -1,:) + mu

yhat = [yhat (2:end , :); prediction_1 - mu];

pred2 = -r_(Ahat , yhat/R);

prediction_2 = pred2(end -1,:) + mu

prediction_1 =

-9.8600e-03 1.9912e-02 2.1857e-02

prediction_2 =

1.1645e-02 2.0458e-02 1.4819e-02

Alternatively, we can construct the VAR(2) model using explicit least squares approxi-
mation; see Section 7.1 in [1] for further details. Finally, we reproduce Fig. 3.3 in [2] by
repeatedly computing one-step predictions using our RKFUNB object.

yhat = y(end -1: end , :);

predictions = [];

for i = 1:5

pred = -r_(Ahat , yhat/R);

predictions = [predictions; pred(end -1, :)];

yhat = [yhat (2:end , :); pred(end -1, :)];

end

Title = {'investment ', 'income ', 'consumption '};

Axis = {[60, 80, -0.12, 0.12], [60, 80, -0.01, 0.05], [60, 80,

-0.01, 0.05]};

for i = 1:3

subplot (3,1,i)
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hold on

plot(orig_y (1:80, i), 'k')

plot (75:80 , [orig_y (75, i); predictions (:, i) + mu(i)], 'k--

')

axis(Axis{i})

title(Title{i})

legend ({'observed ', 'forecast '}, 'Location ', 'northwest ')

end
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