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1 Introduction

In 1877, Yegor Ivanovich Zolotarev wrote an article that poses and solves four problems
[5]: the first two are about polynomial approximation, while the third and fourth are about
rational functions. These problems have become known as Zolotarev’s first, second, third,
and fourth problems. In this example we focus on Zolotarev’s third and fourth problems.
Recently, these problems have become important in numerical linear algebra because of
a recursive construction of spectral projectors of matrices [3, 4].

2 Zolotarev’s fourth problem

We start with the Zolotarev’s fourth problem as it is perhaps easier than the third problem
to visualize. Given two disjoint closed complex sets E and F , Zolotarev’s fourth problem
is to find the rational function r(x) = p(x)/q(x), where p and q are polynomials of degree
k, that deviates least from the sign function on E ∪ F , i.e.,

sgn(x) =

{
−1, x ∈ E,
+1, x ∈ F.

For general sets E and F , the solution to Zolotarev’s fourth problem is not known explic-
itly; however, there are a handful of special cases where the rational function can be given
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in closed form. The most important special case is when E and F are real disjoint inter-
vals. For example, if E = [−b,−1] and F = [1, b] with b > 1 then an explicit solution to
Zolotarev’s fourth problem is known. It is implemented in RKToolbox’s rkfun.gallery

command. Here, we plot the extremal rational function r(x) for degree 4 (k = 4) and also
superimpose on the plot the approximation error:

b = 3; % E = [-b,-1] and F = [1,b]

k = 4; % Degree of rational approximant to sign.

r = rkfun.gallery('sign ', k/2, b); % Solution to Z's fourth

problem

% Plot the computed rational function:

x = linspace(-5, 5, 1000);

y1 = linspace(-3, -1, 1000); y2 = linspace(1, 3, 1000);

fill([-b -1 -1 -b -b], 1.5*[ -1 -1 1 1 -1], .9*[1 1 1] ), hold on

fill([b 1 1 b b], 1.5*[ -1 -1 1 1 -1], .9*[1 1 1] )

[~,l1 ,l2] = plotyy(x, r(x), [y1 0 y2], [(1-abs(r(y1))) NaN (1-

abs(r(y2)))]);

l1.LineWidth = 2; l2.LineWidth = 2;

text(-2.1,-1.4,'E','fontsize ' ,16)

text(2,-1.4,'F','fontsize ' ,16)

title('best R_{44} approximant to sign ')

xlabel('x'), hold off

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1.5

-1

-0.5

0

0.5

1

1.5
best R

44
 approximant to sign

E F
-1.5

-1

-0.5

0

0.5

1

1.5
×10-3

The explicit solution of Zolotarev’s fourth problem involves Jacobi elliptic functions and
complete elliptic integrals. We will not give its formula here, but it can be found scattered
throughout the literature (see [1, Sec. 51, Tab. 2, No. 7 & 8]). The MATLAB code in
rkfun.gallery uses this explicit formula. You will notice that the error |sgn(x) − r(x)|
equioscillates precisely k+1 times on both [−b,−1] and [1, b]. This verifies the optimality
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of r(z) [1, Sec. 51]. Since the error equioscillates between a value of 0 and 1, there is a
number 0 < λ < 1 such that

sup
x∈[−b,−1]∪[1,b]

|x− sgn(x)| = 1− λ
1 + λ

.

The value for λ is known to satisfy the equation kµ(λ) = µ(1/b) [1, Sec. 51], where µ is
the so-called Groetzsch ring function. The Groetzsch ring function µ : [0, 1] → [0,∞) is
defined as the ratio of the complete elliptic integral and its complement. It looks like this:

mu = @(lam) pi/2* ellipk( sqrt(1-lam .^2) )./ ellipk( lam );

lam = linspace(0, 1, 10000);

vals = zeros(numel(lam), 1);

for j = 1: numel(lam), vals(j) = mu(lam(j)); end

plot(lam , vals , 'linewidth ' ,2), xlabel('\lambda ')

title('Groetzsch ring function '), hold off
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Since µ is a monotonically decreasing function, there is a unique λ that solves kµ(λ) =
µ(1/b). We can find it via bisection:

lam1 = 0; lam2 = 1; lam_opt = .5;

target = mu(1/b)/k;

for step = 1:50 % 50 steps finds the root to 16-digits.

lam_opt = mean( [lam1 lam2] );

mid = mu( lam_opt ) - target;

lam1 = lam1 + (mid >0) .*( lam_opt - lam1);

lam2 = lam2 + (mid <=0) .*( lam_opt - lam2);

end
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We can verify that this is the correct λ by comparing it to the observed error computed
by RKToolbox:

format longe

E4_error_lambda = (1-lam_opt)/(1+ lam_opt)

E4_error_observed = max(1-abs(r(y1)))

E4_error_lambda =

1.292026239994933e-03

E4_error_observed =

1.292026239994693e-03

3 How well do rational functions approximate the

sign function?

Zolotarev’s fourth problem shows us that rational functions converge geometrically with
respect to the degree (k, k) to the sgn(x) function defined on real disjoint intervals. In
particular, from these explicit expressions it is known that [2, eqn. (A.5)]

sup
x∈[−b,−1]∪[1,b]

|r(x)− sgn(x)| ≤ 4e−k
π2

2µ(1/b) ,

which is asymptotically a sharp upper bound. Here, is the computed approximation error
supx∈[−b,−1]∪[1,b] |r(x)− sgn(x)| and the upper bound above when b = 100.

b = 100; % E = [-b,-1] and F =

[1,b]

y = linspace(-b, -1, 1000);

for k = 2:2:50

r = rkfun.gallery('sign ', k/2, b); % Solution to Z's fourth

problem

r_error(k/2) = max(abs(r(y)+1));

end

semilogy (2:2:50 , r_error ,'.', 'markersize ', 30), hold on

semilogy (2:2:40 , 4*(exp(pi^2/2/ mu(1/b))).^( -(2:2:40)), 'k-', '

linewidth ' ,2)

legend('Computed errors ', 'Sharp bound ')

xlabel('k'), hold off

hold off
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The location of the extrema of the error |r(x) − sgn(x)| on [−b,−1] and [1, b] are also
known explicitly. They are related to the Jacobi elliptic functions. Here, we demonstrate
this when b = 10.

k = 6; % rational degree

b = 10; % sign function on [-10,-1]\cup [1 ,10]

r = rkfun.gallery('sign ', k/2, b);

% Extrema for [-1,-1/b]\cup [1/b,1]:

K = ellipke (1-1/b^2);

[sn, cn, dn] = ellipj ((0:k)*K/k, 1-1/b^2);

extrema = b*dn; % Transplant to [-b,-1]\cup [1,b]

x = linspace(1, b, 1000);

plot(x, r(x), 'linewidth ', 2), hold on,

plot(extrema , r(extrema), '.r', 'markersize ', 30)

title('extrema of sign approximation error ')

xlabel('x'), hold off
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4 Zolotarev’s third problem

Zolotarev’s third problem is also related to rational approximation, but this time the
problem is to find a rational function that is as small as possible on a set E while being
≥ 1 in absolute value on another set F . More formally, given two disjoint closed complex
sets E and F , Zolotarev’s third problem is to find the rational function r(x) = p(x)/q(x),
where p and q polynomials of degree k, such that |r(x)| ≥ 1 for x ∈ F while supx∈E |r(x)|
is as small as possible. Therefore, r(x) is the extremal rational function that attains the
following infimum:

Zk(E,F ) = inf
r∈Rkk

supz∈E |r(z)|
infz∈F |r(z)|

,

where Rkk denotes the space of rational functions of degree at most (k, k). Here, the
number Zk(E,F ) is referred to as the Zolotarev number. Again, for general sets E
and F the solution to Zolotarev’s third problem is not known explicitly; however, when
E = [−b,−1] and F = [1, b] are intervals with b > 1 a closed-form expression is known.
In fact, the third and fourth problem are mathematically equivalent (see [1, Sec. 51]).
That is, the rational function that solves the fourth problem can be transformed to the
solution of the third problem and vice versa. In particular, we have

sup
x∈[−b,−1]∪[1,b]

|r(x)− sgn(x)| =
√
Zk(E,F )

1 + Zk(E,F )
,

where E = [−b,−1] and F = [1, b]. We can calculate Zk([−b,−1], [1, b]) by using
RKToolbox. First, we compute the approximation error between the sign function on
[−b,−1] ∪ [1, b] and the rational approximation. Then, we solve the equation

sup
[−b,−1]∪[1,b]

|r(x)− sgn(x)| =
√
Zk(E,F )

1 + Zk(E,F )

for Zk(E,F ). That is,
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vals = 1-r(extrema);

c = mean( vals (1:2: end) );

e = eig( [ 2-4/c^2 1 ; 1 0 ] );

Zk = min(abs(e))

Zk =

4.222581683574948e-07

To further verify the connection between the third and fourth Zolotarev problems we use
a Mobius transform to convert the best rational approximation to sgn to the extremal
rational function for Zk(E,F ).

% Mobius transformation of r(x):

R = @(x) (1 + (1+Zk)/(1-Zk)*r(x))./(1 - (1+Zk)/(1-Zk)*r(x));

x = linspace(-b, b, 5000);

plot(x, R(x), 'linewidth ', 2), ylim([-1e4 ,1e4])

xlabel('x')

title('solution to Zolotarev ''s third problem '), hold off
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One can see that R(x) is such that |R(x)| ≥ 1 on F while being very small on E. We can
verify that the rational function R(x) is the extremal rational function by checking that
Zk(E,F ) = supz∈E |R(z)|/ infz∈F |R(z)|:

x = linspace(-b, -1, 1000);

y = linspace(1, b, 1000);

Zk

max(abs(R(x))) / min(abs(R(y)))
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Zk =

4.222581683574948e-07

ans =

4.222581683576213e-07

5 Nonsymmetric intervals: Sign approximation

RKToolbox does not directly construct the extremal rational functions to the third and
fourth Zolotarev problems on real disjoint intervals that are not symmetric such as [a, b]∪
[c, d] with either b < c or d < a; however, one can construct it by hand. First, one derives
the Mobius transform that transplants [a, b] ∪ [c, d] to symmetric intervals of the form
[−γ,−1] ∪ [1, γ] with γ > 1. This is only possible when γ is selected so the cross-ratios
of (a, b, c, d) and (−γ,−1, 1, γ) are equal. (Mobius transforms preserve the cross-ratio of
collinear points.) Therefore, we know that γ must satisfy∣∣∣∣(c− a)(d− b)

(c− b)(d− a)

∣∣∣∣ =
(1 + γ)2

4γ
.

Here, is a graph that checks that the intervals (in blue) are mapped correctly to intervals
of the form [−γ,−1] ∪ [1, γ] (in red) by the computed Mobius transform:

a = -10; b = -2; c = 1.1; d = 2*pi; % [a,b] \cup [c,d]

cross = abs( (c-a)*(d-b)/(c-b)/(d-a) ); % | cross -ratio |

gam = -1 + 2* cross + 2*sqrt(cross^2-cross); % preserve cross -

ratio

% Mobius transform:

B = -(gam+1)*(d-c)/((gam -1)+ 2*(d-c)/(b-c));

A = -2*B/(b-c) - 1; C = 1; D = B;

T = @(z) (A*z + (B - c*A))./(z+(D-c));

% Plot and check:

x = [linspace(a,b) linspace(c,d)];

plot(x+1*1i,'.'), hold on,

plot(T(x)+eps*1i, '.')

xlim ([-11 7]), ylim ([-.5 1.5])

hold off
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Composing the Mobius tranform with the best rational approximation to the sign function
on [−γ,−1] ∪ [1, γ] derives the best rational approximation on [a, b] ∪ [c, d]. Here, is the
best rational approximation of degree (4, 4) on [−10,−2] ∪ [1.1, 2π]:

k = 4;

r = rkfun.gallery('sign ', k/2, gam);

r = @(z) r( T(z) );

x = linspace(a-2,d+2 ,1000);

plot(x, r(x), 'linewidth ', 2)

xlabel('x'), hold off
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6 Other rational problems in RKToolbox

There are a selection of rational approximation problems that are closely related to
Zolotarev’s third and fourth problem in RKToolbox. We briefly mention them here as
they are provided by the command rkfun.gallery. Here is the best degree (8, 8) rational
approximation to the unit step function on [−1, 1]:

k = 8;

r = rkfun.gallery('step ', k/2);

x = linspace(-5, 5, 1000);

plot(x, r(x), 'k-', 'linewidth ', 2)

xlabel('x'), hold off

title('best rational approximation to a step function ')
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Here is the best degree (8, 8) rational approximation to the sqrt function on [1, 10]:

k = 8;

r = rkfun.gallery('sqrt ', k/2, 10);

x = linspace (1 ,10 ,1000);

plot(x, 1 - sqrt(x)./r(x), 'k-', 'linewidth ', 2)

xlabel('x'), hold off

title('error in best rational approx to sqrt ')
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Here is the best degree (8, 8) rational approximation to the inverse sqrt function on [1, 10]:

k = 8;

r = rkfun.gallery('invsqrt ', k/2, 10);

x = linspace (1 ,10 ,1000);

plot(x, 1-r(x).*sqrt(x), 'k-', 'linewidth ', 2)

xlabel('x'), hold off

title('error in best rational approx to invsqrt ')
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[3] S. Güttel, E. Polizzi, P. T. P. Tang, and G. Viaud. Zolotarev quadrature rules and load
balancing for the FEAST eigensolver, SIAM J. Sci. Comput., 37(4):A2100–A2122, 2015.

[4] Y. Nakatsukasa and R. W. Freund. Computing fundamental matrix decompositions ac-
curately via the matrix sign function in two iterations: The power of Zolotarev’s functions,
SIAM Review, 58:461–493, 2016.

[5] D. I. Zolotarev. Application of elliptic functions to questions of functions deviating
least and most from zero, Zap. Imp. Akad. Nauk. St. Petersburg, 30:1–59, 1877.

12


	Introduction
	Zolotarev's fourth problem
	How well do rational functions approximate the sign function?
	Zolotarev's third problem
	Nonsymmetric intervals: Sign approximation
	Other rational problems in RKToolbox
	References

