
A Rational Krylov Toolbox for MATLAB

Mario Berljafa Steven Elsworth Stefan Güttel*

July 15, 2020

Contents

1 Overview 1

2 Rational Krylov spaces 2

3 Computing rational Krylov bases 2

4 Block rational Krylov spaces 3

5 Computing block rational Krylov bases 3

6 Moving poles of a rational Krylov space 5

7 Rational Krylov fitting (RKFIT) 6

8 The RKFUN class 8

9 The RKFUNM class 10

10 The RKFUNB class 12

11 References 12

1 Overview

Thank you for your interest in the Rational Krylov Toolbox (RKToolbox). The RKTool-
box is a collection of scientific computing tools based on rational Krylov techniques. The
development started in 2013 and the current version 2.9 (released in 2020) provides

� an implementation of Ruhe’s (block) rational Krylov sequence method [2, 5, 9, 10],
allowing to control various options, including user-defined inner products, exploita-
tion of complex-conjugate shifts, orthogonalization, rerunning [3], and simulated
parallelism [4],

*School of Mathematics, The University of Manchester, Alan Turing Building, Oxford Road, M13
9PL Manchester, United Kingdom, Correspondence: stefan.guettel@manchester.ac.uk

1

� algorithms for the implicit and explicit relocation of the poles of a rational Krylov
space [2],

� a collection of utility functions and a gallery of special rational functions (e.g.,
Zolotarev approximants),

� an implementation of RKFIT [2, 3], a robust algorithm for approximate rational
least squares approximation, including automated degree reduction,

� the RKFUN class [3] for numerical computations with rational functions, including
support for MATLAB Variable Precision Arithmetic and the Advanpix Multiple
Precision toolbox [1],

� the RKFUNM class, a matrix-valued generalization of RKFUNs, together with the
ability to sample and solve nonlinear eigenvalue problems using the NLEIGS [7] and
AAA algorithms [8], and

� the RKFUNB and BARYFUN classes [5] for numerical computations with more
general rational matrix-valued formats.

This guide explains the main functionalities of the toolbox. To run the embedded MAT-
LAB codes the RKToolbox needs to be in MATLAB’s search path. For details about the
installation we refer to the Download section on http://rktoolbox.org/.

2 Rational Krylov spaces

A (single-vector) rational Krylov space is a linear vector space of rational functions in a
matrix times a vector. Let A be a square matrix of size N × N , b an N × 1 starting
vector, and let ξ1, ξ2, . . . , ξm be a sequence of complex or infinite poles all distinct from the
eigenvalues of A. Then the rational Krylov space of order m+ 1 associated with A, b, ξj
is defined as

Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Amb},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the common denominator of the rational functions

associated with the rational Krylov space. The rational Krylov method by Ruhe [9, 10]
computes an orthonormal basis Vm+1 of Qm+1(A, b, qm). The basis matrix Vm+1 satisfies
a rational Arnoldi decomposition of the form

AVm+1Km = Vm+1Hm,

where (Hm, Km) is an (unreduced) upper Hessenberg pencil of size (m+ 1)×m.

Rational Arnoldi decompositions are useful for several purposes. For example, the eigen-
values of the upper m×m part of the pencil (Hm, Km) can be excellent approximations to
some of A’s eigenvalues [9, 10]. Other applications include matrix function approximation
and rational quadrature, model order reduction, matrix equations, nonlinear eigenprob-
lems, and rational least squares fitting (RKFIT).

3 Computing rational Krylov bases

Relevant functions: rat krylov, util cplxpair

2

http://rktoolbox.org/

Let us compute Vm+1, Km, and Hm using the rat krylov function, and verify that the
outputs satisfy the rational Arnoldi decomposition by computing the relative residual
norm ‖AVm+1Km − Vm+1Hm‖2/‖Hm‖2. For A we take the tridiag matrix of size 100
from MATLAB’s gallery, and b = [1, 0, . . . , 0]T . The m = 5 poles ξj are, in order,
−1,∞,−i, 0, i.

N = 100; % matrix size

A = gallery('tridiag ', N);

b = eye(N, 1); % starting vector

xi = [-1, inf , -1i, 0, 1i]; % m = 5 poles

[V, K, H] = rat_krylov(A, b, xi);

resnorm = norm(A*V*K - V*H)/norm(H) % residual check

resnorm =

3.5143e-16

As some of the poles ξj in this example are complex, the matrices Vm+1, Km, and Hm are
complex, too:

disp([isreal(V), isreal(K), isreal(H)])

0 0 0

However, the poles ξj can be reordered using the function util cplxpair so that complex-
conjugate pairs appear next to each other. After reordering the poles, we can call the
function rat krylov with the ’real’ option, thereby computing a real-valued rational
Arnoldi decomposition [9].

% Group together poles appearing in complex -conjugate pairs.

xi = util_cplxpair(xi);

[V, K, H] = rat_krylov(A, b, xi, 'real ');

resnorm = norm(A*V*K - V*H)/norm(H)

disp([isreal(V), isreal(K), isreal(H)])

resnorm =

3.8874e-16

1 1 1

4 Block rational Krylov spaces

A block Krylov space is a linear space of block vectors of size N × s built with a matrix A
of size N ×N and a starting block vector b = [b1, b2, . . . , bs] of size N × s, with maximal
rank. Let ξ1, ξ2, . . . , ξm be a sequence of complex or infinite poles all distinct from the
eigenvalues of A. Then the block rational Krylov space of order m + 1 associated with
A, b, ξj is defined as

Qblockm+1(A, b, qm) = qm(A)−1

{
m∑
k=0

AkbCk

}
,

where {Ck}mk=0 are matrices of size s × s and qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the common
denominator of the rational matrix-valued functions associated with the block rational

3

Krylov space. The block rational Arnoldi method [5] produces an orthonormal block
matrix Vm+1 = [v1, . . . , vm+1] of size N×(m+1)s which satisfies a block rational Arnoldi
decomposition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unreduced) block upper Hessenberg matrix pencil of size (m +
1)s×ms. The block vectors in Vm+1 blockspan the space Qblockm+1(A, b, qm), that is

Qblockm+1(A, b, qm) =

{
m+1∑
k=1

vkCk

}
,

where the Ck are arbitrary matrices of size s× s.

Block rational Krylov spaces have applications in eigenproblems with repeated eigenval-
ues, model order reduction, matrix equations, and for solving parameterized linear systems
with multiple right-hand sides as they arise, for example, in multisource electromagnetic
modelling.

5 Computing block rational Krylov bases

Relevant functions: rat krylov

Let us compute Vm+1, Km, and Hm using the rat krylov function, and verify that
the outputs satisfy the rational Arnoldi decomposition by computing the relative resid-
ual norm ‖AVm+1Km −Vm+1Hm‖2/‖Hm‖2, and check the orthogonality by computing
‖V ∗

m+1Vm+1 − I‖2.

N = 100; % matrix size

A = gallery('tridiag ', N);

b = zeros(N, 2); b(1,1) = 1; b(7,2) = 1;

xi = [-1, inf , -1i, 0, 1i]; % m = 5 poles

[V, K, H] = rat_krylov(A, b, xi);

resnorm = norm(A*V*K - V*H)/norm(H) % residual check

orthnorm = norm(V'*V - eye(size(V,2))) % orthogonality check

resnorm =

4.1343e-16

orthnorm =

6.6608e-16

The rat krylov function also has the ability to extend the space with additional poles.
When extending a block rational Krylov space, you must specify s, the block size, as there
is no way to infer s from the existing decomposition. This is done using the parameter
param.extend.

param.deflation_tol = eps (1); % default deflation tolerance

param.extend = 2; % block size s, 1 by default

xi = 1;

[V1, K1, H1] = rat_krylov(A, V, K, H, xi, param);

resnorm = norm(A*V1*K1 - V1*H1)/norm(H1) % residual check

orthnorm = norm(V1 '*V1 - eye(size(V1 ,2))) % orthogonality check

4

resnorm =

4.2754e-16

orthnorm =

1.2369e-04

The loss of orthogonality occured as the columns of Vm+1 become nearly linearly de-
pendent. Removing the nearly linearly dependent vectors is called deflation. At each
iteration, the block rational Arnoldi method uses an economy-size QR factorization with
pivoting to detect (near) rank deficiencies. The deflation tolerance can be controlled by
the parameter param.deflation tol.

param.deflation_tol = 1e-10; % increase deflation tolerance

param.extend = 2;

xi = 1;

[V2, K2, H2, out] = rat_krylov(A, V, K, H, xi, param);

resnorm = norm(A*V2*K2 - V2*H2)/norm(H2) % residual check

orthnorm = norm(V2 '*V2 - eye(size(V2 ,2))) % orthogonality check

Warning: rat_krylov: 1 column deflated

resnorm =

6.0479e-14

orthnorm =

6.6385e-16

Removing the linearly dependent columns from Vm+1 results in an uneven block structure
of the rational Arnoldi decomposition, but the orthogonality check has now passed. The
residual norm has increased as the upper-Hessenberg matrix pencil still has columns
containing information about the deflated vectors. Removing the corresponding columns
from the pencil gives a so-called thin decomposition [5].

K2thin = K2(:,out.column_deflation);

H2thin = H2(:, out.column_deflation);

resnorm = norm(A*V2*K2thin - V2*H2thin)/norm(H2thin) % residual check

resnorm =

4.1351e-16

Our implementation rat krylov supports many features not shown in the basic descrip-
tion above.

� It is possible to use matrix pencils (A,B) instead of a single matrix A. This leads
to decompositions of the form AVm+1Km = BVm+1Hm.

� Both the matrix A and the pencil (A,B) can be passed either explicitly, or implicitly
by providing function handles to perform matrix-vector products and to solve shifted
linear systems.

� Non-standard inner products for constructing the orthonormal bases are supported.
� One can choose between classical (CGS) and modified Gram-Schmidt orthogonali-

sation with or without reorthogonalization.
� Iterative refinement for the linear system solves is supported.

For more details type help rat krylov.

5

6 Moving poles of a rational Krylov space

Relevant functions: move poles expl, move poles impl

There is a direct link between the starting vector b and the poles ξj of a rational Krylov

space Qm+1. A change of the poles ξj to ξ̆j can be interpreted as a change of the start-

ing vector from b to b̆, and vice versa. Algorithms for moving the poles of a rational
Krylov space are described in [2] and implemented in the functions move poles expl and
move poles impl.

Example: Let us move the m = 5 poles −1,∞,−i, 0, and i into ξ̆j = −j, j = 1, 2, . . . , 5.

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

xi = [-1, inf , -1i, 0, 1i];

[V, K, H] = rat_krylov(A, b, xi);

xi_new = -1:-1:-5;

[KT, HT, QT, ZT] = move_poles_expl(K, H, xi_new);

The poles of a rational Krylov space are the eigenvalues of the lower m ×m part of the
pencil (H̆m, K̆m) in a rational Arnoldi decomposition AV̆m+1K̆m = V̆m+1H̆m associated
with that space [2]. By transforming a rational Arnoldi decomposition we are therefore
effectively moving the poles:

VT = V*QT ';

resnorm = norm(A*VT*KT - VT*HT)/norm(HT)

moved_poles = util_pencil_poles(KT, HT).'

resnorm =

6.8004e-16

moved_poles =

-1.0000e+00 + 1.1140e-16i

-2.0000e+00 + 1.4085e-15i

-3.0000e+00 - 7.2486e-16i

-4.0000e+00 + 1.6407e-16i

-5.0000e+00 - 2.4095e-16i

7 Rational Krylov fitting (RKFIT)

Relevant function: rkfit

RKFIT [2, 3] is an iterative Krylov-based algorithm for nonlinear rational approximation.
Given two families of N ×N matrices {F [j]}`j=1 and {D[j]}`j=1, an N × n block of vectors

B, and an N × N matrix A, the algorithm seeks a family of rational functions {r[j]}`j=1

of type (m+ k,m), all sharing a common denominator qm, such that the relative misfit

misfit =

√√√√∑`
j=1 ‖D[j][F [j]B − r[j](A)B]‖2F∑`

j=1 ‖D[j]F [j]B‖2F
→ min

6

is minimal. The matrices {D[j]}`j=1 are optional, and if not provided D[j] = IN is assumed.
The algorithm takes an initial guess for qm and iteratively tries to improve it by relocating
the poles of a rational Krylov space.

We now show on a simple example how to use the rkfit function. Consider again the
tridiagonal matrix A and the vector b from above and let F = A1/2.

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

F = sqrtm(full(A));

exact = F*b;

Now let us find a rational function rm(z) of type (m,m) with m = 10 such that ‖Fb −
rm(A)b‖2/‖Fb‖2 is small. The function rkfit requires an input vector of m initial poles
and then tries to return an improved set of poles. If we had no clue about where to place
the initial poles we can easily set them all to infinity. In the following we run RKFIT for
at most 15 iterations and aim at relative misfit ‖Fb − rm(A)b‖2/‖Fb‖2 below 10−10. We
display the error after each iteration.

[xi, ratfun , misfit] = rkfit(F, A, b, ...

repmat(inf , 1, 10), ...

15, 1e-10, 'real ');

disp(misfit)

7.1549e-07 1.4504e-10 4.6348e-11

The rational function rm(A)b of type (10, 10) approximates A1/2b to about 10 decimal
places. A useful output of rkfit is the RKFUN object ratfun representing the rational
function rm. It can be used, for example, to evaluate rm(z):

� ratfun(A,v) evaluates rm(A)v as a matrix function times a vector,
� ratfun(A,V) evaluates rm(A)V as a matrix function times a matrix, e.g., setting
V = I as the identity matrix will return the full matrix function rm(A), or

� ratfun(z) evaluates rm(z) as a scalar function in the complex plane.

Here is a plot of the error |x1/2 − rm(x)| over the spectral interval of A (approximately
[0, 4]), together with the values at the eigenvalues of A:

figure

ee = eig(full(A)).';

xx = sort([logspace (-4.3, 1, 500) , ee]);

loglog(xx,abs(sqrt(xx) - ratfun(xx))); hold on

loglog(ee,abs(sqrt(ee) - ratfun(ee)), 'r.', 'markers ', 15)

axis ([4e-4, 8, 1e-14, 1e -3]); xlabel('x'); grid on

title('| x^{1/2} - r_m(x) |','interpreter ','tex')

7

10-3 10-2 10-1 100

x

10-14

10-12

10-10

10-8

10-6

10-4

| x1/2 - r
m

(x) |

As expected the rational function rm(z) is a good approximation of the square root over
[0, 4]. It is, however, not a uniform approximation because we are approximately mini-
mizing the 2-norm error on the eigenvalues of A, and moreover we are implicitly using a
weight function given by the components of b in A’s eigenvector basis.

Additional features of RKFIT are listed below.

� An automated degree reduction procedure [3, Section 4] is implemented; it takes
place if a relative misfit below tolerance is achieved, unless deactivated.

� Nondiagonal rational approximants are supported; they can be specified via an
additional param structure.

� Adaptive incrementation of the degree controlled by a tolerance when an empty set
of poles xi is provided.

� Utility functions are provided for transforming scalar data appearing in complex-
conjugate pairs into real-valued data, as explained in [3, Section 3.5].

For more details type help rkfit. Some of the capabilities of RKFUN are shown in the
following section.

8 The RKFUN class

RKFUN is the fundamental data type to represent and work with rational functions. It
has already been described above how to evaluate an RKFUN object ratfun for scalar
or matrix arguments by calling ratfun(z) or ratfun(A,v), respectively. There are more
than 30 RKFUN methods implemented, and a list of these can be obtained by typing
methods rkfun:

basis - Orthonormal rational basis functions of an RKFUN.

coeffs - Expansion coefficients of an RKFUN.

8

contfrac - Convert an RKFUN into continued fraction form.

diff - Differentiate an RKFUN.

disp - Display information about an RKFUN.

double - Convert an RKFUN into double precision (undo vpa or mp).

ezplot - Easy-to-use function plotter for RKFUNs.

feval - Evaluate an RKFUN at scalar or matrix arguments.

hess - Convert an RKFUN pencil to (strict) upper-Hessenberg form.

inv - Invert an RKFUN corresponding to a Moebius transform.

isreal - Returns true if an RKFUN is real-valued.

minus - Scalar subtraction.

mp - Convert an RKFUN into Advanpix Multiple Precision format.

mrdivide - Scalar division.

mtimes - Scalar multiplication.

plus - Scalar addition.

poles - Return the poles of an RKFUN.

poly - Convert an RKFUN into a quotient of two polynomials.

power - Integer exponentiation of an RKFUN.

rdivide - Division of two RKFUN.

residue - Convert an RKFUN into partial fraction form.

rkfun - The RKFUN constructor.

roots - Compute the roots of an RKFUN.

size - Returns the size of an RKFUN.

subsref - Evaluate an RKFUN (calls feval).

times - Multiplication of two RKFUNs.

type - Return the type (m+k,m) of an RKFUN.

uminus - Unary minus.

uplus - Unary plus.

vpa - Convert RKFUN into MATLAB's variable precision format.

The names of these methods should be self-explanatory. For example, roots(ratfun)
will return the roots of ratfun, and residue(ratfun) will compute its partial frac-
tion form. Most methods support the use of MATLAB’s Variable Precision Arithmetic
(VPA) and, preferably, the Advanpix Multiple Precision toolbox (MP)[1]. So, for ex-
ample, contfrac(mp(ratfun)) will compute a continued fraction expansion of ratfun

using multiple precision arithmetic. For more details on each of the methods, type help

rkfun.<method name>. The RKFUN gallery provides some predefined rational functions
that may be useful. A list of the options can be accessed as follows:

help rkfun.gallery

GALLERY Collection of rational functions.

obj = rkfun.gallery(funname , param1 , param2 , ...) takes

funname , a case -insensitive string that is the name of

a rational function family , and the family 's input

parameters.

See the listing below for available function families.

constant Constant function of value param1.

9

cheby Chebyshev polynomial (first kind) of degree param1.

cayley Cayley transformation (1-z)/(1+z).

moebius Moebius transformation (az+b)/(cz+d) with

param1 = [a,b,c,d].

sqrt Zolotarev sqrt approximation of degree param1 on

the positive interval [1,param2].

invsqrt Zolotarev invsqrt approximation of degree param1 on

the positive interval [1,param2].

sqrt0h balanced Remez approximation to sqrt(x+(h*x/2)^2)

of degree param3 on [param1 ,param2],

where param1 <= 0 <= param2 and h = param4.

sqrt2h balanced Zolotarev approximation to sqrt(x+(hx /2)^2)

of degree param5 on [param1 ,param2]U[param3 ,param4],

param1 < param2 < 0 < param3 < param4 , h = param6.

invsqrt2h balanced Zolotarev approximation to 1/sqrt(x+(hx /2)^2)

of degree param5 on [param1 ,param2]U[param3 ,param4],

param1 < param2 < 0 < param3 < param4 , h = param6.

sign Zolotarev sign approximation of degree 2* param1 on

the union of [1,param2] and [-param2 ,-1].

step Unit step function approximation for [-1,1] of

degree 2* param1 with steepness param2.

Another way to create an RKFUN is to make use of MATLAB’s symbolic engine.
For example, r = rkfun(’(x+1)*(x-2)/(x-3)^2’) returns a rational function as ex-
pected. Alternatively, one can specify a rational function by its roots and poles (and
an optional scaling factor) using the rkfun.nodes2rkfun function. For example, r =

rkfun.nodes2rkfun([-1,2],[3,3]) will create the same rational function as above. One
can also specify a rational interpolant by its barycentric representation; see the function
util bary2rkfun and reference [6].

9 The RKFUNM class

The RKFUNM class is the matrix-valued generalization of RKFUN. RKFUNM objects
are mainly generated via the util nleigs and util aaa sampling routines for nonlinear
eigenvalue problems. The class provides a method called linearize, which returns a
matrix pencil structure corresponding to a linearization of the RKFUNM. This pencil
can be used in combination with the rat krylov function for finding eigenvalues of the
linearization. We illustrate the capabilities of the RKFUNM class with the help of a
simple example. Assume we want to find numbers z in the interval [−π, π] where the
2× 2 matrix F (z) defined below becomes singular:

F = @(z) [sin(5*z) , 1 ; 1 , 1];

With the help of the AAA algorithm [8] we sample this matrix at sufficiently many
points in the search interval and construct an accurate rational interpolant, which is then
converted into RKFUNM format; see [6] for details on the conversion:

Z = linspace(-pi,pi ,500);

ratm = util_aaa(F,Z)

10

ratm =

RKFUNM object of size 2-by -2 and type (21, 21).

Real dense coefficient matrices of size 2-by -2.

Real -valued Hessenberg pencil (H, K) of size 22-by -21.

We see that ratm is indeed an RKFUNM object representing a matrix-valued rational
function of degree 21. In order to solve the nonlinear eigenvalue problem F (z)v = 0,
v 6= 0, we have to linearize ratm and find the eigenvalues of the linearization near the
search interval:

AB = linearize(ratm);

[A,B] = AB.get_matrices ();

evs = eig(full(A), full(B));

evs = evs(abs(imag(evs))< 1e-7 & abs(evs)<pi);

figure; plot(Z,sin (5*Z));

hold on; h2 = plot(real(evs),0*evs + 1,'ro');

legend('sin(5z)','eigenvalues ','Location ','SouthEast ')

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

sin(5z)
eigenvalues

Indeed, the solutions of sin(5z) = 1 are the points where F (z) becomes singular. For
linearizations of larger dimension the pencil AB should not be converted into matrix form
using AB.get matrices(). Instead, AB should be used as input to rat krylov for solving
the linear eigenvalue problem iteratively:

xi = zeros (1 ,30); % poles of the Krylov space

[m,n] = type(ratm);

dimlin = m*size(ratm ,1); % dimension of linearization

rng(0), v = randn(dimlin , 1); % starting vector of Krylov space

[V, K, H] = rat_krylov(AB, v, xi);

ritzval = eig(H(1:end -1, :), K(1:end -1, :)); % Ritz values

ritzval = ritzval(abs(imag(ritzval))< 1e-14 & abs(ritzval)<pi);

plot(ritzval , 0* ritzval + 1, 'g*');

11

legend('sin(5z)','eigenvalues ' ,...

'Ritz values ','Location ','SouthEast ')

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

sin(5z)
eigenvalues
Ritz values

10 The RKFUNB class

RKFUNB is a data type to represent rational matrix-valued functions of the form

Rm(z) = qm(z)−1(C0 + zC1 + · · ·+ zmCm),

where {Ck}mk=0 are matrices of size s × s. The vectors computed by the block version of
the rational Arnoldi method are closely linked with such functions. RKFUNBs Rm(z)
can be evaluated as follows:

� R(A,v) evaluates Rm(A)◦v as a rational matrix-valued function circed with a block
vector, that is, Rm(A) ◦ v = qm(A)−1(vC0 + AvC1 + · · ·+ AmvCm),

� R(z) evaluates Rm(z) at a scalar argument, giving a matrix of size s× s.

See [5] for more details.

11 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, version 4.3.3.12213,
Tokyo, Japan, 2017. http://www.advanpix.com/.

[2] M. Berljafa and S. Güttel. Generalized rational Krylov decompositions with an appli-
cation to rational approximation, SIAM J. Matrix Anal. Appl., 36(2):894–916, 2015.

[3] M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational approximation,
SIAM J. Sci. Comput., 39(5):A2049–A2071, 2017.

12

http://www.advanpix.com/

[4] M. Berljafa and S. Güttel. Parallelization of the rational Arnoldi algorithm, SIAM J.
Sci. Comput., 39(5):S197–S221, 2017.

[5] S. Elsworth and S. Güttel. The block rational Arnoldi method, SIAM J. Matrix Anal.
Appl., 41(2):365–388, 2020.

[6] S. Elsworth and S. Güttel. Conversions between barycentric, RKFUN, and Newton
representations of rational interpolants, Linear Algebra Appl., 576:246–257, 2019.

[7] S. Güttel, R. Van Beeumen, K. Meerbergen, and W. Michiels. NLEIGS: A class of
fully rational Krylov methods for nonlinear eigenvalue problems, SIAM J. Sci. Comput.,
36(6):A2842–A2864, 2014.

[8] Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm for rational ap-
proximation, SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018.

[9] A. Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix
pencils, SIAM J. Sci. Comput., 19(5):1535–1551, 1998.

[10] A. Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III:
Complex shifts for real matrices, BIT, 34:165–176, 1994.

13

	Overview
	Rational Krylov spaces
	Computing rational Krylov bases
	Block rational Krylov spaces
	Computing block rational Krylov bases
	Moving poles of a rational Krylov space
	Rational Krylov fitting (RKFIT)
	The RKFUN class
	The RKFUNM class
	The RKFUNB class
	References

