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1 Overview

This guide explains the main fun
tionalities of the Rational Krylov Toolbox [1℄.

To run the MATLAB 
odes it is required to download the toolbox and have

it added to your MATLAB path. For details about the download we refer to

http://guettel.
om/rktoolbox/.

2 Rational Krylov spa
es

A rational Krylov spa
e is a linear ve
tor spa
e of rational fun
tions in a matrix

times a ve
tor. Let A be a square matrix of sizeN×N , b anN×1 starting ve
tor,
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and let ξ1, ξ2, . . . , ξm be a sequen
e of 
omplex or in�nite poles all distin
t from

the eigenvalues of A. Then the rational Krylov spa
e of order m+ 1 asso
iated

with A, b, ξj is de�ned as

Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Am
b},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the 
ommon denominator of the ra-

tional fun
tions asso
iated with the rational Krylov spa
e. The rational

Krylov sequen
e method by Ruhe [5℄ 
omputes an orthonormal basis Vm+1 of

Qm+1(A, b, qm). The basis matrix Vm+1 satis�es a rational Arnoldi de
ompo-

sition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unredu
ed) upper Hessenberg pen
il of size (m+1)×m.

Rational Arnoldi de
ompositions are useful for several purposes. For example,

the eigenvalues of the upper m×m part of the pen
il (Hm,Km) 
an be ex
ellent

approximations to some of A's eigenvalues [5℄. Other appli
ations in
lude matrix

fun
tion approximation and rational quadrature, model order redu
tion, matrix

equations, and rational least squares �tting (see below).

3 Computing rational Krylov bases

Relevant fun
tions: rat_krylov, util_
plxpair

Let us 
ompute Vm+1, Km, and Hm using the rat_krylov fun
tion, and verify

that the outputs satisfy the rational Arnoldi de
omposition by 
omputing the

relative residual norm ‖AVm+1Km − Vm+1Hm‖2/‖Hm‖2. For A we take the

tridiag matrix of size 200 from MATLAB's gallery, and b = [1, 0, . . . , 0]T .
The m = 5 poles ξj are, in order, −1,∞,−i, 0, i.

N = 100; % matrix size

A = gal lery('tridiag ', N);

b = eye(N, 1); % starting ve
tor

xi = [-1, inf , -1i, 0, 1i℄; % m = 5 poles

[V, K, H℄ = rat_krylov(A, b, xi);

resnorm = norm(A*V*K - V*H)/norm(H) % residual 
he
k
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resnorm =

4.1663e-15

As some of the poles ξj in this example are 
omplex, the matri
es Vm+1, Km,

and Hm are 
omplex, too:

[ i s rea l (V), i s rea l (K), i s rea l (H)℄

ans =

0 0 0

However, the poles ξj 
an be reordered to appear in 
omplex 
onjugate pairs

using the fun
tion util_
plxpair. After reordering the poles, we 
an 
all the

fun
tion rat_krylov with the 'real' option, thereby 
omputing a real-valued

rational Arnoldi de
omposition [4℄.

% Group together poles appearing in 
omplex -
onjugate pairs.

xi = util_
plxpair (xi);

[V, K, H℄ = rat_krylov(A, b, xi , 'real ');

resnorm = norm(A*V*K - V*H)/norm(H)

[ i s rea l (V), i s rea l (K), i s rea l (H)℄

resnorm =

6.4057e-15

ans =

1 1 1

Our implementation rat_krylov supports many features not shown in the basi


des
ription above.

� It is possible the use matrix pen
ils (A,B) instead of a single matrix A.
This leads to de
ompositions of the form AVm+1Km = BVm+1Hm.

� Both the matrix A and the pen
il (A,B) 
an be passed either expli
-

itly, or impli
itly by providing fun
tion handles to perform matrix-ve
tor

produ
ts and to solve shifted linear systems.

� Non-standard inner produ
ts for 
onstru
ting the orthonormal bases are

supported. Further, one 
an 
hoose between CGS and MGS with or with-

out reorthogonalization.

� Support for iterative re�nement of linear system solutions.

For more details type help rat_krylov.

4 Moving poles of a rational Krylov spa
e

Relevant fun
tions: move_poles_expl, move_poles_impl

3



There is a dire
t link between the starting ve
tor b and the poles ξj of a rational

Krylov spa
eQm+1. A 
hange of the poles ξj to ξ̆j 
an be interpreted as a 
hange

of the starting ve
tor from b to b̆, and vi
e versa. Algorithms for moving the

poles of a rational Krylov spa
e are des
ribed in [2℄ and implemented in the

fun
tions move_poles_expl and move_poles_impl.

Example: Let us move the m = 5 poles −1,∞,−i, 0, and i into ξ̆j = −j,
j = 1, 2, . . . , 5.

N = 100;

A = gal lery('tridiag ', N);

b = eye(N, 1);

xi = [-1, inf , -1i, 0, 1i℄;

[V, K, H℄ = rat_krylov(A, b, xi);

xi_new = -1:-1:-5;

[KT , HT , QT , ZT℄ = move_poles_expl(K, H, xi_new );

The poles of a rational Krylov spa
e are the eigenvalues of the lower m × m
part of the pen
il (H̆m, K̆m) in a rational Arnoldi de
omposition AV̆m+1K̆m =

V̆m+1H̆m asso
iated with that spa
e [2℄. By transforming a rational Arnoldi

de
omposition we are therefore e�e
tively moving the poles:

VT = V*QT ';

resnorm = norm(A*VT*KT - VT*HT)/norm(HT)

moved_poles = util_pen
il_poles (HT , KT).'

resnorm =

6.8685e-15

moved_poles =

-1.0000 e+00 + 1.0476e-16i

-5.0000e-01 - 2.1919e-16i

-3.3333e-01 - 1.7310e-16i

-2.5000e-01 - 2.7182e-16i

-2.0000e-01 + 3.3675e-16i

5 Rational Krylov �tting (RKFIT)

Relevant fun
tion: rkfit

RKFIT [2, 3℄ is an iterative Krylov-based algorithm for nonlinear rational ap-

proximation. Given two families of N × N matri
es {F [j]}ℓj=1 and {D[j]}ℓj=1,

a N × n blo
k of ve
tors B, and a N × N matrix A, the algorithm seeks a

family of rational fun
tions {r[j]}ℓj=1 of type (m+ k,m), all sharing a 
ommon

denominator qm, su
h that the relative mis�t
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misfit =

√

√

√

√

∑ℓ
j=1 ‖D

[j][F[j]B− r[j](A)B]‖2F
∑ℓ

j=1 ‖D
[j]F[j]B‖2F

→ min

is minimal. The matri
es {D[j]}ℓj=1 are optional, and if not provides D[j] = IN
is assumed. The algorithm takes an initial guess for qm and iteratively tries to

improve it by relo
ating the poles of a rational Krylov spa
e.

We now show how to use the rkfit fun
tion on a simple example. Consider

again the tridiagonal matrix A and the ve
tor b from above and let F = A1/2
.

N = 100;

A = gal lery('tridiag ', N);

b = eye(N, 1);

F = sqrtm( f u l l (A));

exa
t = F*b;

Now let us �nd a rational fun
tion rm(z) of type (m,m) with m = 10 su
h that

‖Fb − rm(A)b‖2/‖Fb‖2 is small. The fun
tion rkfit requires an input ve
tor

of m initial poles and then tries to return an improved set of poles. If we had no


lue about where to pla
e the initial poles we 
an easily set them all to in�nity.

In the following we run RKFIT at most 15 iterations of RKFIT and aim at

relative mis�t ‖Fv − rm(A)v‖2/‖Fv‖2 below 10−10
. We display the error after

ea
h iteration.

[xi , ratfun , misfit℄ = rk f i t (F, A, b, ...

repmat( inf , 1, 10), ...

15, 1e-10, 'real ');

misfit

misfit =

7.8110e-07 1.4769e-10 4.6371e-11

The rational fun
tion rm(A)b of type (10, 10) approximates A1/2
v to about

10 de
imal pla
es. A useful output of rkfit is the RKFUN obje
t ratfun

representing the rational fun
tion rm. It 
an be used,for example, to evaluate

rm(z):

� ratfun(A,v) evaluates rm(A)v as a matrix fun
tion times a ve
tor, or

� ratfun(z) evaluates rm(z) as a s
alar fun
tion in the 
omplex plane.

For example, here is a plot of the error |x1/2 − rm(x)| over the spe
tral interval
of A (approximately [0, 4]), together with the values at the eigenvalues of A:
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f igure

ee = eig ( f u l l (A)).';

xx = sort ([ logspa
e (-4.3, 1, 500) , ee ℄);

loglog (xx ,abs( sqrt (xx) - ratfun(xx ))); hold on

loglog (ee ,abs( sqrt (ee) - ratfun(ee)), 'r.')

axis ([4e-4, 8, 1e-14, 1e -3℄); xlabel('x'); grid on

t i t l e ('| x^{1/2} - r_m(x) |','interpreter ','tex ')
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As expe
ted the rational fun
tion rm(z) is a good approximation of the square

root over [0, 4]. It is, however, not a uniform approximation be
ause we are ap-

proximately minimizing the 2-norm error on the eigenvalues of A, and moreover

we are impli
itly using a weight fun
tion given by the 
omponents of b in A's
eigenve
tor basis.

Additional features of RKFIT are listed below.

� An automated degree redu
tion pro
edure is implemented; it takes pla
e

if a relative mis�t below toleran
e is a
hieved, unless dea
tivated.

� Nondiagonal rational approximants are supported; 
an be spe
i�ed via an

additional param stru
ture.

� Utility fun
tions are provided for transforming s
alar data appearing in


omplex-
onjugate pairs into real-valued data, as explained in [3, Se
tion

3.5℄.

For more details type help rkfit.

Some of the 
apabilities of RKFUN are shown in the following se
tion.
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6 The RKFUN 
lass

The rkfun 
lass is the fundamental data type to represent and work with ra-

tional fun
tions. It has already been des
ribed above how to evaluate rkfun

obje
t for s
alar and matrix arguments by 
alling ratfun(z) or ratfun(A,v),

respe
tively. There are more than 20 other methods implemented for rkfun,

and a list of all these 
an be obtained by typing help rkfun:

basis - Orthonormal rational basis fun
tions of a rkfun.


oeffs - Expansion 
oeffi
ients of an rkfun.


ontfra
 - Convert rkfun into 
ontinued fra
tion form.

diff - Differentiate an rkfun.

disp - Display information about an rkfun.

double - Convert rkfun into double pre
ision (undo vpa or mp).

ezplot - Easy-to-use fun
tion plotter.

feval - Evaluate rkfun at s
alar or matrix arguments.

isreal - Returns true if a rkfun is real.

minus - S
alar subtra
tion.

mp - Convert rkfun into Advanpix Multiple Pre
ision format.

mrdivide - S
alar division.

mtimes - S
alar multipli
ation.

plus - S
alar addition.

poles - Return the poles of an rkfun.

poly - Convert rkfun into a quotient of two polynomials.

residue - Convert a rkfun into partial fra
tion form.

roots - Compute the roots of an rkfun.

size - Returns the size of an rkfun.

subsref - Evaluate an rkfun (
alls feval).

type - Return the type (m+k,m) of an rkfun.

uminus - Unary minus.

uplus - Unary plus.

vpa - Convert rkfun into variable pre
ision format.

The names of these methods should be self-explanatory. For example,

roots(ratfun) will return the roots of a ratfun, and residue will 
ompute

the partial fra
tion form. Most methods support the use of MATLAB's Variable

Pre
ision Arithmeti
 (VPA) or the Advanpix Multiple Pre
ision toolbox (MP).

So, for example, 
ontfra
(mp(ratfun)) will 
ompute a 
ontinued fra
tion ex-

panion of ratfun using multiple pre
ision arithmeti
. For more details on ea
h

of the methods, type help [name of method℄.

7 Referen
es

[1℄ M. Berljafa and S. Güttel. A Rational Krylov Toolbox for MATLAB, MIMS

7



EPrint 2014.56 (http://eprints.ma.man.a
.uk/2199/), Man
hester Institute for

Mathemati
al S
ien
es, The University of Man
hester, UK, 2014.

[2℄ M. Berljafa and S. Güttel. Generalized rational Krylov de
ompo-

sitions with an appli
ation to rational approximation, SIAM J. Matrix

Anal. Appl., 2015. To appear. Available also as MIMS EPrint 2014.59

(http://eprints.ma.man.a
.uk/2278/).

[3℄ M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational

approximation, MIMS EPrint 2015.38 (http://eprints.ma.man.a
.uk/2309/),

Man
hester Institute for Mathemati
al S
ien
es, The University of Man
hester,

UK, 2015.

[4℄ A. Ruhe. Rational Krylov: A pra
ti
al algorithm for large sparse nonsym-

metri
 matrix pen
ils, SIAM J. S
i. Comput., 19(5):1535�1551, 1998.

[5℄ A. Ruhe. The rational Krylov algorithm for nonsymmetri
 eigenvalue prob-

lems. III: Complex shifts for real matri
es, BIT, 34:165�176, 1994.

8

http://eprints.ma.man.ac.uk/2199/
http://eprints.ma.man.ac.uk/2278/
http://eprints.ma.man.ac.uk/2309/

	Overview
	Rational Krylov spaces
	Computing rational Krylov bases
	Moving poles of a rational Krylov space
	Rational Krylov fitting (RKFIT)
	The RKFUN class
	References

