Computing with rational functions

Tags: RKFUN, rational functions

Name: Mario Berljafa and Stefan Giittel
File: example_rkfun.m

Date: 27/05/2015

Contents

[1_Introduction 1

[2_Evaluating an rkfun 2
Plotting 2

E Comes o e e o
[9_Referenced 9

1 Introduction

This toolbox comes with an implementation of a class called rkfun, which is the
fundamental data type to represent and work with rational functions. Objects
of this class are produced by the rkfit function (described in [2,3]), which in
its simplest use case attemts to find a rational function r such that

|Fb —r(A)bll2 — min,

where A, F' are square matrices and b is a vector of compatible sizes. For
example, let us consider A = tridiag(—1,2,—1), b = [1,0,...,0]7, and F =
(A—20)2(A2—1)"1(A—4I)~t. We know that r(z) = (z—2)%(22—-1)"1(z—4)7!
is a minimizer for the above problem. Let us try to find it via RKFIT:

N = 100;
A = gallery('tridiag',N);
I = speye(N);

F = (A - 2xI)~2%inv(A~2 - I)*xinv(A - 4%I);
b = eye(N,1);

xi = inf*ones(1,5); % initial poles at infinity
maxit = 5; tol = 1le-12;
[xi,ratfun,misfit] = rkfit(F,A,b,xi,maxit,tol, 'real');

As we started with m = 5 initial poles (at infinity), RKFIT will search for a
rational function r of type (5,5). When more than 1 iteration is performed
and the tolerance tol is chosen sufficiently large, RKFIT will try to reduce
the type of the rational function while still maintaining a relative misfit below
the tolerance, i.e., |[F'b — r(A)bll2 < tol||Fb||2. Indeed, a reduction has taken
place and the type has been reduced to (2, 3), as can be seen from the following
output:

ratfun

ratfun =
RKFUN object of type (2,3).
Real Hessenberg pencil (H,K) of size 4-by-3.
coeffs = [-0.0869, -0.394, -1.33, -1.5 1]

We can now perform various operations on the ratfun object, all implemented
as methods of the class rkfun. To see a list of all methods just type help rkfun.
We will now discuss some methods in more detail.

2 Evaluating an rkfun

We can easily evaluate r(z) at any point (or many points) in the complex plane.
The following command will evaluate 7(2) and r(3 + 4) simultaneously:

format long
ratfun([2 ; 3+1i])

ans =
0.000000000000034 + 0.0000000000000001
0.011764705882320 - 0.1529411764708821i

We can also evaluate r as a matrix function, i.e., computing (M) B for matrices
M and B, by using two input arguments. For example, by setting B = I we
effectively compute the full matrix function r(M):

M =193, 1; 0, 31;
B = eye(2);

R = ratfun(M,B)

R =

-0.125000000000272 -0.281250000000544
0 -0.125000000000272

3 Plotting

As r can be evaluated at any point in the complex plane, it is straightforward
to produce plots of this function. For example, here is a contour plot of logyq ||
over the complex region [—2,5] x [—1, 1]i:

figure (1)

[X,Y] = meshgrid(-2:.01:5,-1:.01:1); Z = X + 1ix*Y;
R = ratfun(Z);

contourf (X,Y,log10(abs(R)),-4:.5:2)

colormap hsv, colorbar

1

: 2
0.8
1
0.6
0.4
0
-1
-0.2
-2
-0.4
-06
-3
-0.8
) -1 0 1 2 3 4 5 4

Another command ezplot can be used to get a quick idea of how ratfun looks
over an interval on the real axis, in this case, [—2, 5]:

figure (2)

ezplot (ratfun,[-2,5])
ylim([-5,5])

grid on

1
(¢)]

4 Pole- and root-finding

From the above plot we guess that r has poles at x = £1 and « = 4 and a root
at x = 2, which is to be expected from the definition of r. The two commands
poles and roots do exactly what their names suggest:

pls = poles(ratfun)
roots (ratfun)

rts

pls =
0.999999999999999
-1.000000000000605
4.000000000000003

rts =
1.999999547063492
2.000000452935510

As expected from s type (2,3) rational function, there are two roots and three
poles. Note that the pole at x = —1 is identified with slightly less accuracy than
the poles at x = 1 and x = 4. This is because the point x = —1 is outside the
spectral interval of A and hence sampled less accurately. Also the double root
at x = 2 is identified up to an accuracy of ~ 10~ only. This is not surprising
as the function is flat nearby multiple roots. However, the backward error of
the roots is small:

ratfun(rts)

ans =
1.0e-15 =
0.138777878078145
0.138777878078145

5 Basic arithmetic operations and differentiation

We have implemented some very basic operations on rkfun’s, namely, the mul-
tiplication by a scalar and the addition of a scalar. The result of such operations
is again an rkfun object. For example, the following command computes points
z where 2r(z) =

z = roots(2*ratfun - pi)
ratfun(z)

z =
-0.405042315586584
0.857694376021584

ans =
1.570796326794896
1.570796326794897

We have currently not implemented the addition and multiplication of two
rkfun’s, though this is doable in principle. However, we can already differ-
entiate a rational function using the diff command. The following will find all
local extrema of r by computing the roots of r’:

extrema = roots(diff (ratfun))

extrema =
0.407592768316864

+

0.0000000000000001
2.000000007213609 0.0000000000000001
2.796203600878076 2.6271316163518521i
2.796203600878076 - 2.6271316163518521i

+ +

There are two real extrema which we can add to the above plot of r:

figure(2), hold on
plot (extrema (1:2) ,ratfun(extrema(1:2)), 'ro')

-5 L L L
-2 -1 0 1 2 3 4 5

The syntax and "feel" of these computations is inspired by the Chebfun sys-
tem [4], which represents polynomials via Chebyshev interpolants and allows for
many more operations to be performed than our rkfun implementation. Here
we are representing rational functions through their coefficients in a discrete-
orthogonal rational function basis. Working with rational functions poses some
challenges not encountered with polynomials. For example, the indefinite inte-
gral of a rational function is not necessarily a rational function but may contain
logarithmic terms.

6 Multiple precision computations

Objects of class rkfun can be converted to MATLAB’s Variable Precision Arith-
metic (VPA) as follows:

vpa(ratfun)

ans =
RKFUN object of type (2,3).
Real Hessenberg pencil (H,K) of size 4-by-3.
Variable precision arithmetic (VPA) activated.
coeffs = [-0.0869, -0.394, -1.33, -1.5]

Alternatively, we can also use the Advanpix Multiple Precision (MP) toolbox
[1], which is typically more efficient and reliable than VPA. We recommend
the use of this toolbox in particular for high-precision root-finding of rkfun’s
and conversion to partial fraction form, as MATLAB’s VPA does not support
generalized eigenvalue problems:

ratfun = mp(ratfun)

ratfun =
RKFUN object of type (2,3).
Real Hessenberg pencil (H,K) of size 4-by-3.
Multiple precision arithmetic (ADVANPIX) activated.
coeffs = [-0.0869, -0.394, -1.33, -1.5]

When evaluating a multiple precision ratfun, the result will be returned in mul-

tiple precision:

ratfun([2 ; 3+1i])
ans =

Columns 1 through 1

3.434024222017004731285023676831756e-14 +
0i
0.01176470588232020213010063005597186 -
0.15294117647088244950135957837939911i

It is important to understand that, although the evaluation of ratfun is now
done in multiple precision, the computation of ratfun using the rkfit command
has been performed in standard double precision. rkfit does not currently
support the computation of rkfun’s in multiple precision. Here are the roots of
ratfun computed in multiple precision:

roots (mp(ratfun))

ans =

1.999999546081609784329105502644233
2.000000453917395201475935899049275

7 Conversion to partial fraction form

It is often convenient to convert a rational function r into its partial fraction
form

(e3] O
2751 ngm

r(z) = ap +

The residue command of our toolbox performs such a conversion. Currently,
this only works when the poles &; of r are distinct and r is not of superdiagonal
type (i-e., there is no linear term in r). As the conversion to partial fraction
form can be an ill-conditioned transformation, we recommend to use residue
in conjunction with the multiple precision feature. Here are the poles {; and
residues a; (j = 1,...,m), as well as the absolute term «g, of the function r
defined above:

[alpha,xi,alpha0O,cnd] = residue (mp(ratfun));
double ([xi , alphal)
double (alphaO)

ans =
-1.000000000000605 0.900000000001050
0.999999999999999 -0.166666666666673
4.000000000000003 0.266666666667165
ans =
1.025954395909300e-16

The absolute term is close to zero as r is of subdiagonal type. The output cnd of
residue corresponds to the condition number of the transformation to partial
fraction form. In this case of a low-order rational function with well separated
poles the condition number is actually quite moderate:

cnd

cnd =
56.150570384550242

8 Conversion to quotient and continued fraction
form

Our toolbox also implements the conversion of a rkfun to quotient form r = p/q
with two polynomials p and ¢ given in the monomial basis. As with the con-
version to partial fraction form, we recommend performing this transformation
in multiple precision arithmetic due to potential ill-conditioning. Here we con-
vert r into the p/q form and evaluate it at © = 2 using MATLAB’s polyval
command:

[p,q] = poly(mp(ratfun));
polyval(p,2)./polyval (q,2)

ans =

3.434024222017004236112745256053473e-14

A rkfun can also be converted into continued fraction form

r(z) = —————- i ——— + absterm
hh (D) *z + 1
n 1o
@)%z 441
M) 1
bh(m*z + 1/h(m)
as follows:
[h,hh,absterm,cnd] = contfrac(mp(ratfun));

That’s it for this tutorial. Note that more methods will be added over time and
we’d be happy to receive any feedback or bug reports. For more details about
the internal representation of rkfun, see [3].

The following command merely creates a nice thumbnail.

figure(1), hold on, plot(NaN) % create thumbnail

2
1
0

@ 4

-2

-3

5 -4

3 4 5

1 T

0.8

0.6

0.4

-2 -1 0 1

9 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, ver
3.8.3.8882, Tokyo, Japan, 2015. |http://www.advanpix.com/.

[2] M. Berljafa and S. Giittel. Generalized rational Krylov decomposi-
tions with an application to rational approrimation, accepted for publi-
cation in STAM J. Matrix Anal. Appl., 2015. MIMS EPrint 2014.59
(http://eprints.ma.man.ac.uk /2278 /), Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2014.

[3] M. Berljafa and S. Giittel. The RKFIT algorithm for nonlinear rational
approzimation, MIMS EPrint 2015.38 (http://eprints.ma.man.ac.uk/2309/),
Manchester Institute for Mathematical Sciences, The University of Manchester,
UK, 2015.

[4] T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide, Pafnuty Pub-
lications, Oxford, 2014. http://www.chebfun.org

10

http://www.advanpix.com/
http://eprints.ma.man.ac.uk/2278/
http://eprints.ma.man.ac.uk/2309/
http://www.chebfun.org

	Introduction
	Evaluating an rkfun
	Plotting
	Pole- and root-finding
	Basic arithmetic operations and differentiation
	Multiple precision computations
	Conversion to partial fraction form
	Conversion to quotient and continued fraction form
	References

