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1 Introduction

This is an example of RKFIT being used for approximating exp(A)b, the action
of the matrix exponential onto a vector b. RKFIT is described in [1,2] and this
code reproduces Example 3 in [1].

This example demonstrates that RKFIT can sometimes find sensible approxi-
mants even when A is a nonnormal and all initial poles are chosen at infinity.
However, we also demonstrate that the convergence can be sensitive to the in-
tial guess, as is not surprising with nonlinear iterations. We show how real (or
complex conjugate) poles can be enforced in RKFIT.

We first define the matrix A, the vector b, and the matrix F' corresponding to
exp(A). Our aim is then to find a rational function r of type (m,m) such that
|F'b —r(A)b]2 is small.

N = 100;

A = -b*xgallery('grcar',N,3);

% Grcar matrix from gallery

[fov,evs] = util_fovals (full(A),100);

% compute numerical range

b = ones(N,1);

% vector of all ones

f = @(x) exp(x); fm = Q@(X) expm(full(A));
fm(A);

exact = Fxb;

]
1]



In order to run RKFIT we only need to specify the initial poles &; of r. In this
first test let’s choose all 16 initial poles equal to infinity.

m = 16;
init_xi = ones(1,m)*inf; % initial poles

2 Running rkfit with real data

As all quantities F', A, and b, as well as the initial poles are real or infinite, it is
recommended to use the >real’ option. RKFIT will then attempt to produce
a rational approximant with perfectly complex conjugate (or even real) poles.
We set the tolerance for the relative misfit to 10712:

maxit = 10;

tol = le-12;

xi = init_xi;

[xi,ratfun,misfit ,out] = rkfit(F,A,b,xi,maxit,tol, 'real');
xi_rkfit = xi;

All computed poles appear in perfectly complex conjugate pairs.

xi_rkfit

xi_rkfit =

Columns 1 through 2

5.0885e+00 - 2.9517e+011i 5.0885e+00 + 2.9517e+011
Columns 3 through 4

9.3537e+00 - 2.5243e+011i 9.3537e+00 + 2.5243e+011
Columns 5 through 6

1.2161e+01 - 2.1323e+011i 1.2161e+01 + 2.1323e+011i
Columns 7 through 8

1.4113e+01 - 1.7513e+011i 1.4113e+01 + 1.7513e+011i
Columns 9 through 10

1.5456e+01 - 1.3717e+01i 1.5456e+01 + 1.3717e+011i
Columns 11 through 12

1.6329e+01 - 9.8811e+001 1.6329e+01 + 9.8811e+001i
Columns 13 through 14

1.6836e+01 - 5.9754e+001i 1.6836e+01 + 5.9754e+001
Columns 15 through 16

1.7062e+01 - 2.0015e+001 1.7062e+01 + 2.0015e+001

Here is a convergence history of RKFIT, showing the relative misfit defined as
|IFb —r(A)bll2/||Fb|2 at each iteration. It turns out that only two iterations
were required.

figure (2)
semilogy (misfit, 'ro--")



xlabel('iteration')
title('relative 2-norm error')
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3 Evaluating the rational approximant

The second output ratfun is an object that can be used to evaluate the com-
puted rational approximant. This evaluation is implemented in two ways. The
first option is to evaluate a matrix function r(A)b by calling ratfun(A,b) with
two input arguments. For example, here we are calculating the absolute misfit:

norm(F*b - ratfun(A,b))

ans =
3.7854e-12

Alternatively, we can evaluate r(z) pointwise by giving only one input argument.
Let’s plot the modulus of the scalar error function err(xz) = f(z) — r(z) over a
region in the complex plane:

[X,Y] = meshgrid(linspace(-18,18,500),linspace (-30,30,500));
Z = X + 1ixY;
E = f(Z) - ratfun(Z);

figure (1)

contourf (X,Y,logl0(abs (E)),linspace (-16,8,25))
hold on

plot (evs,'r.', 'MarkerSize',6)



plot (fov, 'm-")

plot (xi_rkfit,'gx')

xlabel ('real(z)'); ylabel('imag(z)"')

title('abs (exp(z) - r(z))")

legend ('error','evs','fov', 'poles','Location', 'NorthWest"')
colorbar

abs(exp(z) - r(z))
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4 Some other choices for the initial poles

Choosing all initial poles equal to infinite seems to work fine. Let us try a finite
initial guess, e.g., choosing all poles at 0:

init_xi = zeros(l,m); 7% initial poles

Again, RKFIT requires only 2 iterations:

[xi,ratfun ,misfit ,out] = rkfit(F,A,b,init_xi ,maxit,tol, 'real');
figure(2), hold on

semilogy (misfit,'rs--")

legend ('RKFIT (all init poles infinite)','RKFIT (all init poles

0)")
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Finally, let’s change the initial poles to —10. This turns out to be an unlucky
initial guess and RKFIT fails to find a minimizer within 10 iterations. Note that
the matrix A is highly nonnormal and RKFIT is a nonlinear iteration, which
will probably make the convergence analysis of this example very involved.

-10*ones (1,m); %
[xi,ratfun,misfit ,out] =
semilogy (misfit, 'r*--")

init_xi = initial poles

legend ('RKFIT (all init poles infinite)','RKFIT (all init poles

"RKFIT (all init poles = -10)')

rkfit(F,A,b,init_xi ,maxit ,tol, 'real');

0)',...
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That’s it. The following just creates a nice thumbnail.

figure (1), plot (NaN)

abs(exp(z) - r(z))
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