Pole optimization for exponential integration

Tags: RKFIT, exponential integration
Name: Mario Berljafa and Stefan Giittel
File: example_expint.m

Date: 27/05/2015

Contents
[1_TIntroductionl 1
[2_Surrogate approach 2

1 Introduction

This example is concered with the computation of a family of common-
denominator rational approximants for the two-parameter function exp(—tz)
using RKFIT [2, 3]. This corresponds to the example from [3, Section 6.2].
Let us consider the problem of solving a linear constant-coefficient initial-value
problem

at several time points ¢1,...,t,. The exact solutions u(¢;) are given in terms
of the matrix exponential as w(t;) = exp(—t;L)up. A popular approach for
approximating w(t;) is to use rational functions rV! of the form

(4] (4]

J
o7 o3 o 0,[n]

constructed so that r)(L)uy ~ u(t;). Note that the poles of 7] do not depend
on t; and we have

m

(D)o =Y o (&I - L) uo,

=1

the evaluation of which amounts to the solution of m linear systems. Such
common-pole approximants have great computational advantage, in particular,
in combination with direct solvers (as the LU factorizations of &I — L can
be reused for each t;) and when the linear systems are assigned to parallel
processors.

2 Surrogate approach

In order to use RKFIT for finding "good" poles &;,...,&, of the rational
functions rVl, we propose a surrogate approach similar to that in [4]. Let
A = diag(A1,...,An) be a diagonal matrix whose eigenvalues are a "sufficiently
dense" discretization of the positive semiaxis A > 0. In this example we take
N = 500 logspaced eigenvalues in the interval [107¢,10%]. Further, we define
¢ = 41 logspaced time points ¢; in the interval [107!,10'], and the matrices
FUl = exp(—t;A). We also define b = [1,...,1]7 to assign equal weight to each
eigenvalue of A.

N = 500;

ee = [0 , logspace(-6, 6, N-1)1;
A = spdiags(ee(:), 0, N, N);

b = ones(N, 1);

t = logspace(-1, 1, 41);

for j = 1:length(t)
F{j} = spdiags(exp(-t(j)*ee(:)), 0, N, N);
end

We then run the RKFIT algorithm for finding a family of rational functions rl/!
of type (m — 1,m) with m = 12 so that ||[FUlb — rUl(A)b||5 is minimized for all
G=1,....0.

m= 12; k = -1; % type (11, 12)

xi = repmat(inf, 1, m); % initial poles

param.k = k;

param.maxit = 6; % at most 6 RKFIT iterations
param.tol = 0; s exactly 6 iterations
param.real = 1; % data is real -valued

[xi, ratfun, misfit, out] = rkfit(F, A, b, xi, param);

3 The RKFIT outputs

The first output argument of RKFIT is a vector xi collecting the poles &1,...,&,
of the rational Krylov space. The second output ratfun is a cell array each cell
of which is a rkfun, a datatype representing a rational function. All rational
functions in this cell array share the same denominator with roots &1, ..., &,.
The next output parameter is a vector containing the computed relative misfit
after each RKFIT iteration. The relative misfit is defined as (cf. eq. (1.5) in

[31)

S IIF6Te — Ul (A)b%

misfit = 7 ——
> I FUTB%

We can easily verify that the last entry of misfit indeed corresponds to this
formula:

num = 0; den = 0;

for j = 1:length(ratfun)
num = num + norm(F{j}*b - ratfun{j}(A,b), 'fro')~2;
den = den + norm(F{j}*b, 'fro')~2;

end

[misfit (end) sqrt(num/den)]

ans =
3.5658e-05 3.5658e-05

Here is a plot of the misfit vector, giving an idea of the RKFIT convergence:

figure

semilogy (0:6, [out.misfit_initial, misfit]*sqrt(den), 'r-');
xlabel('iteration');

ylabel ('absmisfit ')

title ('RKFIT convergence')

RKFIT convergence

10 T T T T T

absmisfit

10'3 1 1 1
0 1 2 3 4 5 6

iteration

4 Verifing the accuracy

To evaluate the quality of the common-denominator rational approximants for
all £ = 41 time points t;, we perform an experiment similar to that in [5,
Figure 6.1] by approximating u(t;) = exp(—t;L)ug and comparing the result
to MATLAB’s expm. Here, L is a 841 x 841 finite-difference discretization of
the scaled 2D Laplace operator —0.02A on the domain [—1,1]? with homoge-
neous Dirichlet boundary condition, and ug corresponds to the discretization of
uop(x,y) = (1 — 22)(1 — y?)e® on that domain.

% Parts of the following code have been taken from [5]:
J =30; h=2/J; s = (-1+h:h:1-h)"';

% in [3] and [6] J = 50 is used

[xx,yy]l = meshgrid(s,s); % 2D grid

x = xx(:); y = yy(:);

% 2D grid stretched to 1D

L = 0.02xgallery('poisson',J-1)/h"2; % 2D Laplacian
v = (1-x.72).%(1-y.72) .xexp(x); % initial condition
v = v/norm(v);

for j = 1:length(t)
exac(:,j) = expm(-t(j)*L)*v;
rat = ratfun{j}(L,v);

err_rat(j) = norm(rat - exac(:,j));
bnd (j) = norm(ratfun{j}(A,b) - F{j}*b,inf);
end

We now plot the error ||u(t;) — 7V (L)ugl||2 for each time point ¢; (curve with
red circles), together with the approximate upper error bound || exp(—t;A)b —
rll1(A)b]|o (black curve), which can be easily computed by direct evaluation.
We find that the error is indeed approximately uniform and smaller than 1.1 x
10~* over the time interval [1071, 101].

figure

loglog(t, bnd, 'k-')

hold on

loglog(t, err_rat, 'r-o')

xlabel('time t'); ylabel('2-norm error')

legend ('RKFIT Bound','RKFIT PFE', 'Location', 'NorthWest')
title('approximating exp(-tL)u_0 for many t')

grid on

axis ([0.1, 10, 1le-7, 1e6])

approximating exp(—tL)u0 for many t

10 T
—RKFITBound| = = = = =
-©-RKFIT PFE
10° , 1
10* .
5
6 10° .
£
o
T
N 10_2_ 4
i

5 Conversion to partial fraction form

When evaluating the rational functions rU! on a parallel computer, it is conve-
nient to have their partial fraction expansions at hand. The rkfun class pro-
vides a method called residue for this purpose. This method supports the use
of MATLAB’s variable precision (VPA) capabilities, or the Advanpix Multiple
Precision (MP) toolbox [1].

For example, here are the residues and poles of the first rational function !
corresponding to exp(—t1A4)b:

try mp(1l); catch err, try mp = @(x) vpa(x); mp(1l); catch err,
warning ('Neither MP nor VPA are available. Using doubles only

[resid, xi, absterm, cnd, pfl]
double ([resid , xil])

residue (mp (ratfun{1}));

ans =
-8.0933e-01 4.3970e-011 .7017e+01 2.6932e+011
-8.0933e-01 4.3970e-011 .7017e+01 2.6932e+011
3.4678e-01 5.7694e-021i .2471e-01 1.7483e+001
3.4678e-01 5.7694e-021 .2471e-01 1.7483e+001
-3.8186e-01 1.3638e+001 .0238e+00 1.2598e+011
-3.8186e-01 1.3638e+001 .0238e+00 1.2598e+011
6.2955e-01 - 4.8167e-01i -3.1345e-01 + 5.0527e+001
6.2955e-01 + 4.8167e-01i -3.1345e-01 - 5.0527e+00i1
1.1529e-01 + 4.4170e-02i -4.4044e-01 + 6.5794e-011i
1.1529e-01 - 4.4170e-02i -4.4044e-01 - 6.5794e-011i
1.3237e-01 - 2.3826e-04i -5.1714e-01 + 2.1646e-011
1.3237e-01 + 2.3826e-04i -5.1714e-01 - 2.1646e-011i

6 Comparison with contour-based approach

We now compare RKFIT with the accuracy of the contour-based rational ap-
proximants derived in [5]. As discussed there, this approach leads to approxi-
mants which are very accurate near t =~ 1, but their accuracy degrades rapidly
as one moves away from this parameter.

% Contour integral code from [5].
NN = 12; theta = pi*(1:2:NN-1)/NN;
% quad pts in (0,pi)
z = NN*(.1309-.1194*theta.~2+.2500i*theta);
% quad pts on contour
w = NN#(-.1194*2xtheta+.25001);
% derivatives
for j = 1:length(t)
c = (1i/NN)*xexp(t(j)*z) .*w;
% quadrature weights
appr = zeros (size(v));
for k = 1:NN/2,
% sparse linear solves
appr = appr - c(k)*((z(k)*speye(size(L))+L)\v);
end
appr = 2*real (appr);
% exploit symmetry
err_cont (j) = norm(appr-exac(:,j));
end
loglog(t,err_cont,'b--s')
legend ('RKFIT Bound', 'RKFIT PFE', 'Contour PFE',

'Location', 'NorthWest')

approximating exp(—tL)uO for many t

10 :
—RKFIT Bound| = = - @ @
-©-RKFIT PFE

10* H{-[1- Contour PFE

2-norm error

7 Plot of the poles

Finally, the m = 12 poles of the rational functions rU! are shown in the following
plot. We can see that the "optimal" RKFIT poles do not seem to lie on a
parabolic contour.

figure

hhl = plot(xi, 'ro');
axis ([-3, 12, -13, 131)
hold on

% Also plot the contour.

theta = linspace (0, 2*pi, 300);

zz = -NN*(.1309-.1194xtheta."~2+.2500i*xtheta);

plot (zz, 'b-")

plot (conj (zz), 'b-"')

hh2 = plot(-[z, conj(z)], 'bs');

plot ([0, 1e3], [0, 0], 'k-', 'LineWidth', 3)

xlabel('real'), ylabel('imag')

title('poles of rational approximants for exp(-tz)')

grid on

legend ([hh1l, hh2], 'RKFIT', 'Contour',
'Location', 'NorthWest')

8 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, ver
3.8.3.8882, Tokyo, Japan, 2015. |http://www.advanpix.com/.

[2] M. Berljafa and S. Giittel. A Rational Krylov Toolbox for MATLAB, MIMS
EPrint 2014.56 (http://eprints.ma.man.ac.uk/2199/), Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, 2014.

[3] M. Berljafa and S. Giittel. The RKFIT algorithm for nonlinear rational
approzimation, MIMS EPrint 2015.38 (http://eprints.ma.man.ac.uk/2309/),
Manchester Institute for Mathematical Sciences, The University of Manchester,
UK, 2015.

[4] R.-U. Borner, O. G. Ernst, and S. Giittel. Three-dimensional tran-
sient electromagnetic modeling wusing rational Krylov methods, Geophys.
J. Int., 2015. To appear. Available also as MIMS EPrint 2014.36
(http://eprints.ma.man.ac.uk/2219/).

[5] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures
and rational approximations, BIT, Vol. 46, pp. 653670, 2006.

http://www.advanpix.com/
http://eprints.ma.man.ac.uk/2199/
http://eprints.ma.man.ac.uk/2309/
http://eprints.ma.man.ac.uk/2219/

	Introduction
	Surrogate approach
	The RKFIT outputs
	Verifing the accuracy
	Conversion to partial fraction form
	Comparison with contour-based approach
	Plot of the poles
	References

