
Moving the poles of a rational Krylov spa
e

Tags: RAT_KRYLOV, poles

Name: Mario Berljafa and Stefan Güttel

File: example_move_poles.m

Date: 14/06/2015

Contents

1 Rational Krylov spa
es 1

2 The poles of a rational Krylov spa
e 1

3 Moving the poles expli
itly 2

4 Moving the poles impli
itly 3

5 Some fun with moving poles 4

6 Referen
es 8

1 Rational Krylov spa
es

A rational Krylov spa
e is a linear ve
tor spa
e of rational fun
tions in a matrix

times a ve
tor [5℄. Let A be a square matrix of size N ×N , b an N × 1 nonzero

starting ve
tor, and let ξ1, ξ2, . . . , ξm be a sequen
e of 
omplex or in�nite poles

all distin
t from the eigenvalues of A. Then the rational Krylov spa
e of order

m+ 1 asso
iated with A, b, ξj is de�ned as

Qm+1 ≡ Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Am
b},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the 
ommon denominator of the rational

fun
tions asso
iated with Qm+1. The rational Krylov sequen
e method by Ruhe

[5℄ 
omputes an orthonormal basis Vm+1 of Qm+1. The �rst 
olumn of Vm+1


an be 
hosen as Vm+1e1 = b/‖b‖2. The basis matrix Vm+1 satis�es a rational

Arnoldi de
omposition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unredu
ed) upper Hessenberg pen
il of size (m+1)×m.
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2 The poles of a rational Krylov spa
e

Given a rational Arnoldi de
omposition of the above form, it 
an be shown [1℄

that the poles ξj of the asso
iated rational Krylov spa
e are the generalized

eigenvalues of the lower m × m subpen
il of (Hm,Km). Let us verify this at

a simple example by �rst 
onstru
ting a rational Krylov spa
e asso
iated with

the m = 5 poles −1,∞,−i, 0, i. The matrix A is of size N = 100 and 
hosen

as the tridiag matrix from MATLAB's gallery, and b is the �rst 
anoni
al

unit ve
tor. The rat_krylov 
ommand is used to 
ompute the quantities in

the rational Arnoldi de
omposition:

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

m = 5;

xi = [-1, inf , -1i, 0, 1i℄;

[V, K, H℄ = rat_krylov (A, b, xi);

Indeed, the rational Arnoldi de
omposition is satis�ed with a residual norm


lose to ma
hine pre
ision:

format short e

norm (A*V*K - V*H) / norm (H)

ans =

4.1663e-15

And the 
hosen poles ξj are the eigenvalues of the lower m×m subpen
il:

eig(H(2:m+1,1:m),K(2:m+1,1:m))

ans =

-1.0000 e+00 + 0.0000e+00i

Inf + 0.0000e+00i

0.0000e+00 - 1.0000e+00i

0.0000e+00 + 0.0000e+00i

0.0000e+00 + 1.0000e+00i

3 Moving the poles expli
itly

There is a dire
t link between the starting ve
tor b and the poles ξj of a rational

Krylov spa
eQm+1. A 
hange of the poles ξj to ξ̆j 
an be interpreted as a 
hange

of the starting ve
tor from b to b̆, and vi
e versa. Algorithms for moving the

poles of a rational Krylov spa
e are des
ribed in [1℄ and implemented in the

fun
tions move_poles_expl and move_poles_impl.
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For example, let us move the poles of the above rational Krylov spa
e Qm+1 to

the points −1,−2, . . . ,−5:

xi_new = -1:-1:-5;

[KT , HT , QT , ZT℄ = move_poles_expl (K, H, xi_new );

The output of move_poles_expl are unitary matri
esQ and Z, and transformed

upper Hessenberg matri
es K̆m = QKmZ and H̆m = QHmZ, so that the lower

m×m part of the pen
il (H̆m, K̆m) has as generalized eigenvalues the new poles

ξ̆j :

eig(HT (2:m+1,1:m),KT (2:m+1,1:m))

ans =

-1.0000 e+00 + 0.0000e+00i

-2.0000 e+00 + 8.7675e-16i

-3.0000 e+00 + 1.5579e-15i

-4.0000 e+00 + 4.3491e-15i

-5.0000 e+00 - 8.4187e-15i

De�ning V̆m+1 = Vm+1Q
∗
, the transformed rational Arnoldi de
omposition is

AV̆m+1K̆m = V̆m+1H̆m.

This 
an be veri�ed numeri
ally by looking at the residual norm:

VT = V*QT ';

norm (A*VT*KT - VT*HT) / norm(HT)

ans =

6.8685e-15

It should be noted that the fun
tion move_poles_expl 
an be used to move

the m poles to arbitrary lo
ations, in
luding to in�nity, and even to the eigen-

values of A. In latter 
ase, the transformed spa
e V̆m+1 does not 
orrespond

to a rational Krylov spa
e generated with starting ve
tor V̆m+1e1 and poles ξ̆j ,
but must be interpreted as a �ltered rational Krylov spa
e. Indeed, the pole

relo
ation problem is very similar to that of applying an impli
it �lter to the

rational Krylov spa
e [3,4℄. See also [1℄ for more details.

4 Moving the poles impli
itly

Assume we are given a nonzero ve
tor b̆ ∈ Qm+1 with 
oe�
ient represen-

tation b̆ = Vm+1c, where c is a ve
tor with m + 1 entries. The fun
tion
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move_poles_impl 
an be used to obtain a transformed rational Arnoldi de
om-

position with starting ve
tor b̆.

As an example, let us take c = [0, . . . , 0, 1]T and hen
e transform the rational

Arnoldi de
omposition so that V̆m+1e1 = vm+1, the last basis ve
tor in Vm+1:


 = zeros(m+1 ,1); 
(m+1) = 1;

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, 
);

VT = V*QT ';

The poles of the rational Krylov spa
e with the modi�ed starting ve
tor 
an

again be read o� as the generalized eigenvalues of the lower m × m part of

(H̆m, K̆m):

eig(HT (2:m+1,1:m),KT (2:m+1,1:m))

ans =

3.2914e+00 - 5.5756e-02i

1.8705e+00 - 1.2100e-01i

7.7852e-01 - 9.2093e-02i

1.9752e-01 - 3.0824e-02i

4.4392e-03 - 3.5884e-04i

This impli
it pole relo
ation pro
edure is key element of the RKFIT algorithm

des
ribed in [1,2℄.

5 Some fun with moving poles

To 
on
lude this example, let us 
onsider a 10× 10 random matrix A, a random
ve
tor b, and the 
orresponding 6-dimensional rational Krylov spa
e with poles

at −2,−1, 0, 1, 2:

A = (randn (10) + 1i*randn (10))*.5;

b = randn(10 ,1) + 1i*randn(10 ,1);

m = 5;

xi = -2:2; % initial poles

[V, K, H℄ = rat_krylov (A, b, xi);

Here are the eigenvalues of A:

figure

plot (eig(A),'ko','MarkerFa
eColor ','y')

axis ([ -2.5 ,2.5 , -2.5 ,2.5℄) , grid on , hold on
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We now 
onsider a t-dependent 
oe�
ient ve
tor c(t) su
h that Vm+1c(t) is


ontinuously "morphed" from v1 to v2. The poles of the rational Krylov spa
e

with the transformed starting ve
tor Vm+1c(t) are then plotted as a fun
tion of

t.

for t = linspa
e (1,2,51),


 = zeros(m+1 ,1);


(floor(t)) = 
os(pi*(t-floor(t))/2);


(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, 
);

% transformed pen
il

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m))); % new poles

plot (real(xi_new),imag (xi_new),'b+')

end
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As one 
an see, only one of the �ve poles starts moving away from −2, with the

remaining four poles staying at their positions. This is be
ause "morphing" the

starting ve
tor from v1 to v2 only a�e
ts a two-dimensional subspa
e of Qm+1

whi
h in
ludes the ve
tor b and is itself a rational Krylov spa
e, and this spa
e

is parameterized by one pole only.

As we now 
ontinue morphing from v2 to v3, another pole starts moving:

for t = linspa
e (2,3,51),


 = zeros(m+1 ,1);


(floor(t)) = 
os(pi*(t-floor(t))/2);


(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, 
);

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m)));

plot (xi_new ,'r+')

end
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Morphing from v3 to v4, then to v5, and �nally to v6 will eventually a�e
t all

�ve poles of the rational Krylov spa
e:

for t = linspa
e (3 ,5.99 ,150) ,


 = zeros(m+1 ,1);


(floor(t)) = 
os(pi*(t-floor(t))/2);


(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, 
);

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m)));

swit
h floor(t),


ase 3, plot (xi_new ','g+')


ase 4, plot (xi_new ','m+')


ase 5, plot (xi_new ','
+')

end

end
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