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1 Introdution

This example is onered with the omputation of a family of ommon-

denominator rational approximants for the two-parameter funtion exp(−tz)
using RKFIT [2, 3℄. This orresponds to the example from [3, Setion 6.2℄.

Let us onsider the problem of solving a linear onstant-oe�ient initial-value

problem

u
′(t) + Lu(t) = 0 , u(0) = u0,

at several time points t1, . . . , tℓ. The exat solutions u(tj) are given in terms

of the matrix exponential as u(tj) = exp(−tjL)u0. A popular approah for

approximating u(tj) is to use rational funtions r[j] of the form

r[j](z) =
σ
[j]
1

ξ1 − z
+

σ
[j]
2

ξ2 − z
+ · · ·+

σ
[j]
m

ξm − z
,
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onstruted so that r[j](L)u0 ≈ u(tj). Note that the poles of r
[j]

do not depend

on tj and we have

r[j](L)u0 =

m
∑

i=1

σ
[j]
i (ξiI − L)−1

u0,

the evaluation of whih amounts to the solution of m linear systems. Suh

ommon-pole approximants have great omputational advantage, in partiular,

in ombination with diret solvers (as the LU fatorizations of ξiI − L an

be reused for eah tj) and when the linear systems are assigned to parallel

proessors.

2 Surrogate approah

In order to use RKFIT for �nding "good" poles ξ1, . . . , ξm of the rational

funtions r[j], we propose a surrogate approah similar to that in [4℄. Let

A = diag(λ1, . . . , λN ) be a diagonal matrix whose eigenvalues are a "su�iently

dense" disretization of the positive semiaxis λ ≥ 0. In this example we take

N = 500 logspaed eigenvalues in the interval [10−6, 106]. Further, we de�ne

ℓ = 41 logspaed time points tj in the interval [10−1, 101], and the matries

F [j] = exp(−tjA). We also de�ne b = [1, . . . , 1]T to assign equal weight to eah

eigenvalue of A.

N = 500;

ee = [0 , logspae (-6, 6, N -1)℄;

A = spdiags(ee(:), 0, N, N);

b = ones (N, 1);

t = logspae (-1, 1, 41);

for j = 1: length(t)

F{j} = spdiags (exp(-t(j)*ee(:)), 0, N, N);

end

We then run the RKFIT algorithm for �nding a family of rational funtions r[j]

of type (m− 1,m) with m = 12 so that ‖F [j]
b − r[j](A)b‖2 is minimized for all

j = 1, . . . , ℓ.

m = 12; k = -1; % type (11, 12)

xi = inf(1,m); % initial poles at infinity

param.k = k; % subdiagonal approximant

param.maxit = 6; % at most 6 RKFIT iterations

param.tol = 0; % exatly 6 iterations

param.real = 1; % data is real -valued

[xi , ratfun , misfit , out℄ = rkfit(F, A, b, xi , param);
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3 The RKFIT outputs

The �rst output argument of RKFIT is a vetor xi olleting the poles ξ1, . . . , ξm
of the rational Krylov spae. The seond output ratfun is a ell array eah ell

of whih is a rkfun, a datatype representing a rational funtion. All rational

funtions in this ell array share the same denominator with roots ξ1, . . . , ξm.

The next output parameter is a vetor ontaining the omputed relative mis�t

after eah RKFIT iteration. The relative mis�t is de�ned as (f. eq. (1.5) in

[3℄)

misfit =

√

√

√

√

∑ℓ

j=1 ‖F
[j]b − r[j](A)b‖2F

∑ℓ

j=1 ‖F
[j]b‖2F

.

We an easily verify that the last entry of misfit indeed orresponds to this

formula:

num = 0; den = 0;

for j = 1: length(ratfun)

num = num + norm (F{j}*b - ratfun{j}(A,b), 'fro')^2;

den = den + norm (F{j}*b, 'fro ')^2;

end

[misfit(end) sqrt (num/den )℄

ans =

3.5658e-05 3.5658e-05

Here is a plot of the misfit vetor, giving an idea of the RKFIT onvergene:

figure

semilogy (0:6, [out.misfit_initial , misfit ℄* sqrt (den), 'r-');

xlabel('iteration ');

ylabel('absmisfit ')

title('RKFIT onvergene ')

3



0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

10
2

iteration

ab
sm

is
fit

RKFIT convergence

4 Veri�ng the auray

To evaluate the quality of the ommon-denominator rational approximants for

all ℓ = 41 time points tj , we perform an experiment similar to that in [5,

Figure 6.1℄ by approximating u(tj) = exp(−tjL)u0 and omparing the result

to MATLAB's expm. Here, L is a 841× 841 �nite-di�erene disretization of

the saled 2D Laplae operator −0.02∆ on the domain [−1, 1]2 with homoge-

neous Dirihlet boundary ondition, and u0 orresponds to the disretization of

u0(x, y) = (1− x2)(1− y2)ex on that domain.

% Parts of the following ode have been taken from [5℄:

J = 30; h = 2/J; s = (-1+h:h:1-h)';

% in [3℄ and [5℄ J = 50 is used

[xx ,yy℄ = meshgrid (s,s); % 2D grid

x = xx (:); y = yy (:);

% 2D grid strethed to 1D

L = 0.02* gallery ('poisson ',J -1)/ h^2; % 2D Laplaian

v = (1-x.^2).*(1 -y.^2).* exp(x); % initial ondition

v = v/norm (v);

for j = 1: length(t)

exa (:,j) = expm (-t(j)*L)*v;

rat = ratfun{j}(L,v);

err_rat(j) = norm (rat - exa (:,j));

bnd(j) = norm (ratfun{j}(A,b) - F{j}*b,inf );

end
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We now plot the error ‖u(tj) − r[j](L)u0‖2 for eah time point tj (urve with

red irles), together with the approximate upper error bound ‖ exp(−tjA)b −
r[j](A)b‖∞ (blak urve), whih an be easily omputed by diret evaluation.

We �nd that the error is indeed approximately uniform and smaller than 1.1×
10−4

over the time interval [10−1, 101].

figure

loglog(t, bnd , 'k-')

hold on

loglog(t, err_rat , 'r-o')

xlabel('time t'); ylabel('2-norm error')

legend('RKFIT Bound','RKFIT PFE ','Loation ','NorthWest ')

title('approximating exp(-tL)u_0 for many t')

grid on

axis ([0.1 , 10, 1e-7, 1e6℄)
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5 Conversion to partial fration form

When evaluating the rational funtions r[j] on a parallel omputer, it is onve-

nient to have their partial fration expansions at hand. The rkfun lass pro-

vides a method alled residue for this purpose. This method supports the use

of MATLAB's variable preision (VPA) apabilities, or the Advanpix Multiple

Preision (MP) toolbox [1℄.

For example, here are the residues and poles of the �rst rational funtion r[1]

orresponding to exp(−t1A)b:
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try mp (1); ath err , try mp = �(x) vpa(x); mp (1); ath err , mp = �(x) x;

warning('Neither MP nor VPA are available . Using doubles only .'); end , end

[resid , xi , absterm , nd , pf℄ = residue(mp(ratfun {1}));

double([ resid , xi℄)

ans =

-8.0933e-01 + 4.3970e-01i 1.7017e+01 + 2.6932e+01i

-8.0933e-01 - 4.3970e-01i 1.7017e+01 - 2.6932e+01i

3.4678e-01 + 5.7694e-02i -6.2471e-01 + 1.7483e+00i

3.4678e-01 - 5.7694e-02i -6.2471e-01 - 1.7483e+00i

-3.8186e-01 - 1.3638e+00i 3.0238e+00 + 1.2598e+01i

-3.8186e-01 + 1.3638e+00i 3.0238e+00 - 1.2598e+01i

6.2955e-01 - 4.8167e-01i -3.1345e-01 + 5.0527e+00i

6.2955e-01 + 4.8167e-01i -3.1345e-01 - 5.0527e+00i

1.1529e-01 + 4.4170e-02i -4.4044e-01 + 6.5794e -01i

1.1529e-01 - 4.4170e-02i -4.4044e-01 - 6.5794e -01i

1.3237e-01 - 2.3826e-04i -5.1714e-01 + 2.1646e -01i

1.3237e-01 + 2.3826e-04i -5.1714e-01 - 2.1646e -01i

6 Comparison with ontour-based approah

We now ompare RKFIT with the auray of the ontour-based rational ap-

proximants derived in [5℄. As disussed there, this approah leads to approxi-

mants whih are very aurate near t ≈ 1, but their auray degrades rapidly

as one moves away from this parameter.

% Contour integral ode from [5℄.

NN = 12; theta = pi *(1:2:NN -1)/ NN;

% quad pts in (0,pi)

z = NN *(.1309 -.1194* theta .^2+.2500 i*theta);

% quad pts on ontour

w = NN *( -.1194*2* theta +.2500i);

% derivatives

for j = 1: length(t)

 = (1i/NN)* exp(t(j)*z).*w;

% quadrature weights

appr = zeros(size (v));

for k = 1:NN/2,

% sparse linear solves

appr = appr - (k)*((z(k)* speye(size(L))+L)\v);

end

appr = 2* real (appr );

% exploit symmetry

err_ont (j) = norm (appr -exa (:,j));

end

loglog(t,err_ont ,'b--s')

legend('RKFIT Bound', 'RKFIT PFE', 'Contour PFE ', ...
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7 Plot of the poles

Finally, the m = 12 poles of the rational funtions r[j] are shown in the following
plot. We an see that the "optimal" RKFIT poles do not seem to lie on a

paraboli ontour.

figure

hh1 = plot (xi , 'ro');

axis ([-3, 12, -13, 13℄)

hold on

% Also plot the ontour.

theta = linspae (0, 2*pi , 300);

zz = -NN *(.1309 -.1194* theta .^2+.2500 i*theta);

plot (zz , 'b-')

plot (onj (zz), 'b-')

hh2 = plot (-[z, onj (z)℄, 'bs ');

plot ([0, 1e3℄, [0, 0℄, 'k-', 'LineWidth ', 3)

xlabel('real '), ylabel('imag ')

title('poles of rational approximants for exp(-tz)')

grid on

legend([hh1 , hh2℄, 'RKFIT', 'Contour ', ...

'Loation ', 'NorthWest ')
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