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1 Introdution

We onsider the problem of �nding eigenvalues λ ∈ Σ and nonzero eigenvetors

x of a nonlinear eigenvalue problem (NLEP)

A(λ)x = 0 .

Here Σ is a ompat target set in the omplex plane and A(λ) is a family of

n × n matries depending analytially on λ. A popular approah for solving

suh problems is to approximate A(λ) by a polynomial or rational eigenvalue

problem of the form

QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN ,

where the Dj are n×nmatries, and the bj are polynomials or rational funtions

in λ. Provided that the bj an be generated by a linear reursion, the problem

QN(λ)x = 0 an be "linearised" into a linear penil (AN , BN ) of size Nn×Nn,
whih in pratie an be rather large depending on N and n.
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2 The NLEIGS linearisation

The NLEIGS linearisation [3℄ is based on rational interpolation, with the bj
hosen as rational basis funtions of the form

b0(λ) = 1, bj+1(λ) =
(λ− σj)

βj+1(1 − λ/ξj+1)
bj(λ).

Here, the σj are interpolation nodes on the boundary of Σ, and the ξj are

poles whih an be hosen freely, for example all at in�nity (whih leads to

a polynomial interpolant) or on a singularity set Ξ of A(λ). The advantage

of employing an interpolation-based approximation QN(λ) is that the matries

Dj an be obtained solely by sampling A(σj), provided that the nodes σj are

distint. For more details we refer to [3, Setion 2.1℄.

The numbers βj are saling fators whih, as suggested in [3℄, are hosen so that

max
λ∈Σ

|bj(λ)| ≈ 1. This saling has the advantage that the norms ‖Dj‖F give an

indiation of the approximation auray of QN (λ) for A(λ); see [3, Setion 4℄

for more details.

3 Leja-Bagby sampling

To obtain a omputationally e�ient linearisation it is desirable that QN(λ) ≈
A(λ) is a good approximation for all λ ∈ Σ with a small degree parameter

N . This suggests to use an (asymptotially) optimal rational interpolation

proedure and we propose to hoose the (σj , ξj) as Leja-Bagby points on (Σ,Ξ)
[1, 9℄.

More preisely, hoosing σ0 ∈ Σ arbitrarily, we de�ne the nodes σj and poles ξj
so that the following onditions are satis�ed:

max
λ∈Σ

|sj(λ)| = |sj(σj+1)|, min
λ∈Ξ

|sj(λ)| = |sj(ξj+1)|,

with the nodal funtions sj de�ned as sj(λ) =
(λ− σ0) · · · (λ − σj)

(λ− ξ1) · · · (λ − ξj)
.

4 The Gun problem

We now demonstrate the above with an example taken from the problem olle-

tion [2℄. We use the so-alled gun problem, whih is a model of a radio-frequeny
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gun avity [5℄. The orresponding NLEP is

A(λ)x = [K − λM + i
√
λW1 + i

√

λ− 108.87742W2]x = 0 ,

where K,M,W1,W2 are sparse 9956× 9956 matries. Let us de�ne a funtion

handle to the NLEP.

if exist('nlevp') ~= 2

disp ('Funtion nlevp.m not found. Can be downloaded from :')

disp (['http :// www.maths.manhester .a.uk/our -researh /researh -groups' ...

'/numerial -analysis -and -sientifi -omputing /numerial -analysis /' ...

'software /nlevp/'℄)

return

end

[oeffs , fun℄ = nlevp('gun');

n = size (oeffs {1}, 1);

A = �(lam) 1* oeffs {1} - lam*oeffs {2} + ...

1i*sqrt (lam )* oeffs {3} + ...

1i*sqrt (lam -108.8774^2)* oeffs {4};

The target set Σ for this problem is an upper-half irle with enter 62500 and
radius 50000. Note that the de�nition of A(λ) involves two branh uts (−∞, 0]
and (−∞, 108.87742] aused by the square roots, and the union of these two is

a good hoie for the singularity set Ξ.

We an now use the utility funtion util_linearise_nlep to sample the NLEP

on the target set Σ using poles from the singularity set Ξ. The funtion requires

as inputs a funtion handle to A(λ), the verties of Σ and Ξ represented by

polygons, a tolerane for the sampling proedure, and the maximal number of

terms.

Nmax = 50;

Sigma = 62500 + 50000* exp (1i*pi*[1, linspae (0, 1)℄);

Xi = [-inf , 108.8774^2℄;

tol = 1e -15;

AB = util_linearise_nlep (A, Sigma , Xi , tol , Nmax );

The output of util_linearise_nlep is a struture AB representing the lin-

earisation (AN , BN ) of a rational eigenvalue problem QN(λ) whih interpolates

A(λ) at the nodes σj (i.e., QN (σj) = A(σj) for all j = 0, 1, . . . , N). Here is a

plot of the norm ‖Dj‖F of the matries Dj . Apparently, a degree of N = 32
was su�ient to represent A(λ) to auray tol = 10−15

:

figure (1)

semilogy (0: AB.N, AB.nrmD /AB.nrmD (1), 'r-'), grid on
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legend('relative Frobenius norm of D_j'); xlabel('j')

axis ([0, AB.N, 1e-16, 1℄)
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Lukily this N = 32 is quite small due to the Leja-Bagby sampling strategy

employed by util_linearise_nlep. However, the full linearisation matries

(AN , BN ) are of size Nn × Nn and hene quite large. Here is a spy plot of

(AN , BN ).

[AN ,BN℄ = AB. get_matries ();

figure (2)

subplot (1,2,1), spy(AN), title('A_N')

subplot (1,2,2), spy(BN), title('B_N')

The AB struture provides two funtion handles multiply and solve, whih

an be used by the rat_krylov funtion to ompute a rational Krylov basis
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for (AN , BN) without forming these matries expliitly [7, 8℄. Following [3℄,

we use 5 ylially repeated shifts in the interior of Σ for the rational Arnoldi

algorithm.

shifts = [9.6e+4, 7.9e+4+1.7e+4i, 6.3e+4, 4.6e+4+1.7e+4i, 2.9e+4℄;

Let us �rst plot the target set, the sampling points σj , the poles ξj , and the

shifts of the rational Krylov spae:

figure (3)

fill (real (sqrt (Sigma)), imag(sqrt (Sigma)), [1 1 .6℄)

hold on

plot (sqrt (AB.sigma), 'gx', 'Color', [0 .5 0℄)

plot (sqrt (AB.xi(AB.xi >0))+1i*eps , 'r.', 'MarkerSize ', 14)

plot (sqrt (shifts), 'mo')

xlabel('Re sqrt (lambda)'), ylabel('Im sqrt (lambda)')

legend('target set \Sigma', 'interpolation nodes \sigma_j ', ...

'poles \xi_j ', 'RK shifts ', 'Loation ', 'NorthWest ')

axis ([0 ,350 , -10 ,110℄)
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The omputation of the rational Arnoldi deomposition ANVm+1Km =
BNVm+1Hm is onveniently performed by providing the penil struture AB

as the �rst input argument to the rat_krylov funtion. Here, m = 70 and the

starting vetor is hosen at random.

Note: The shifts in this example are ylially repeated and the solve funtion

provided in the AB struture attempts to reuse LU fators of n × n matries

whenever possible. The �ve LU fators required for this example are stored

automatially as persistent variables within the solve funtion.
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v = randn(AB.N*n, 1);

shifts = repmat(shifts , 1, 14);

[V, K, H℄ = rat_krylov (AB , v, shifts , strut('waitbar ', 1));

From the rational Arnoldi deomposition we an easily ompute the Ritz pairs

for the linearisation (AN , BN ). In the following we extrat the Ritz values in

the interior of Σ and �nd, onsistently with [3℄, that there are 21 Ritz values.

The leading n elements of the orresponding Ritz vetors (normalised to unit

norm) are then approximations to the eigenvetors x of A(λ).

[X, D℄ = eig(H(1: end -1, :), K(1:end -1, :));

ritzval = diag (D);

ind = inpolygon (real (ritzval), imag (ritzval), ...

real (Sigma), imag (Sigma ));

ritzval = ritzval (ind);

ritzve = V(1:n, 1: end )*(H*X(:, ind ));

ritzve = ritzve /diag (sqrt (sum(abs(ritzve ).^2)));

disp (length(ritzval ))

21

Let us ompute the nonlinear residual norm ‖A(λ)x‖2 for all 21 Ritz pairs

(λ, x ):

res = arrayfun (�(j) norm (A(ritzval (j))* ritzve (:, j), 'fro'), ...

1: length(ritzval ));

figure (4)

semilogy (res , 'b-o'), xlim ([1, length(res )℄)

legend('residual norm of Ritz pairs')

xlabel('index of Ritz pair '), hold on
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We �nd that all but 4 Ritz pairs are good approximations to the eigenpairs of

the nonlinear problem. Let us run �ve more rational Arnoldi iterations by using

as shift the mean of the four nononverged Ritz values. This an be done by

simply extending the existing rational Arnoldi deomposition.

% Use mean of Ritz values.

shifts = repmat(mean (ritzval(res >1e -8)), 1, 5);

% Extend the deomposition .

[V, K, H℄ = rat_krylov (AB , V, K, H, shifts , strut('waitbar ' ,1));

Now let us ompute the improved Ritz pairs and the orresponding nonlinear

residuals exatly as above:

[X, D℄ = eig(H(1: end -1, :), K(1:end -1, :));

ritzval = diag (D);

ind = inpolygon (real (ritzval), imag (ritzval), ...

real (Sigma), imag (Sigma ));

ritzval = ritzval (ind);

ritzve = V(1:n, 1: end )*(H*X(:, ind ));

ritzve = ritzve /diag (sqrt (sum(abs(ritzve ).^2)));

res = arrayfun (�(j) norm (A(ritzval (j))* ritzve (:, j), 'fro'), ...

1: length(ritzval ));

figure (4)

semilogy (res , 'r-o')

legend('residual norm of Ritz pairs','residual norm (extended )')
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All wanted Ritz pair are now of su�iently high auray and we are done.

Finally, here is a plot of the Ritz values, whih oinides with [3, Figure 4(a)℄:

figure (3)

plot (sqrt (ritzval ), 'b+')

legend('target set \Sigma', 'interpolation nodes \sigma_j ', ...

'poles \xi_j ', 'RK shifts ', '21 Ritz values ', ...

'Loation ', 'NorthWest ')
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5 Extensions

The linearisation omputed by util_linearise_nlep is referred to as the

"stati variant of NLEIGS" in [3℄. The NLEIGS algorithm, whih is also avail-

able online, supports the dynami expansion of the linearisation (AN , BN) as
the rational Arnoldi iteration progresses. This dynami expansion is inspired

by the "in�nite Arnoldi algorithm" presented in [4℄. The CORK algorithm in

[8℄ is a memory-e�ient variant of NLEIGS whih exploits the speial struture

of the Krylov basis vetors Vm+1 assoiated with (AN , BN).
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