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1 Overview

This guide explains the main funtionalities of the Rational Krylov Toolbox [1℄.

To run the MATLAB odes it is required to download the toolbox and have

it added to your MATLAB path. For details about the download we refer to

http://guettel.om/rktoolbox/.

2 Rational Krylov spaes

A rational Krylov spae is a linear vetor spae of rational funtions in a matrix

times a vetor. Let A be a square matrix of sizeN×N , b anN×1 starting vetor,
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and let ξ1, ξ2, . . . , ξm be a sequene of omplex or in�nite poles all distint from

the eigenvalues of A. Then the rational Krylov spae of order m+ 1 assoiated

with A, b, ξj is de�ned as

Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Am
b},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the ommon denominator of the ra-

tional funtions assoiated with the rational Krylov spae. The rational

Krylov sequene method by Ruhe [5℄ omputes an orthonormal basis Vm+1 of

Qm+1(A, b, qm). The basis matrix Vm+1 satis�es a rational Arnoldi deompo-

sition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unredued) upper Hessenberg penil of size (m+1)×m.

Rational Arnoldi deompositions are useful for several purposes. For example,

the eigenvalues of the upper m×m part of the penil (Hm,Km) an be exel-

lent approximations to some of A's eigenvalues [5℄. Other appliations inlude

matrix funtion approximation and rational quadrature, model order redution,

matrix equations, nonlinear eigenproblems, and rational least squares �tting

(see below).

3 Computing rational Krylov bases

Relevant funtions: rat_krylov, util_plxpair

Let us ompute Vm+1, Km, and Hm using the rat_krylov funtion, and verify

that the outputs satisfy the rational Arnoldi deomposition by omputing the

relative residual norm ‖AVm+1Km − Vm+1Hm‖2/‖Hm‖2. For A we take the

tridiag matrix of size 200 from MATLAB's gallery, and b = [1, 0, . . . , 0]T .
The m = 5 poles ξj are, in order, −1,∞,−i, 0, i.

N = 100; % matrix size

A = gal lery('tridiag ', N);

b = eye(N, 1); % starting vetor

xi = [-1, inf , -1i, 0, 1i℄; % m = 5 poles

[V, K, H℄ = rat_krylov(A, b, xi);

resnorm = norm(A*V*K - V*H)/norm(H) % residual hek
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resnorm =

4.1663e-15

As some of the poles ξj in this example are omplex, the matries Vm+1, Km,

and Hm are omplex, too:

[ i s rea l (V), i s rea l (K), i s rea l (H)℄

ans =

0 0 0

However, the poles ξj an be reordered to appear in omplex onjugate pairs

using the funtion util_plxpair. After reordering the poles, we an all the

funtion rat_krylov with the 'real' option, thereby omputing a real-valued

rational Arnoldi deomposition [4℄.

% Group together poles appearing in omplex -onjugate pairs.

xi = util_plxpair (xi);

[V, K, H℄ = rat_krylov(A, b, xi , 'real ');

resnorm = norm(A*V*K - V*H)/norm(H)

[ i s rea l (V), i s rea l (K), i s rea l (H)℄

resnorm =

6.4057e-15

ans =

1 1 1

Our implementation rat_krylov supports many features not shown in the basi

desription above.

� It is possible the use matrix penils (A,B) instead of a single matrix A.
This leads to deompositions of the form AVm+1Km = BVm+1Hm.

� Both the matrix A and the penil (A,B) an be passed either expli-

itly, or impliitly by providing funtion handles to perform matrix-vetor

produts and to solve shifted linear systems.

� Non-standard inner produts for onstruting the orthonormal bases are

supported. Further, one an hoose between CGS and MGS with or with-

out reorthogonalization.

� Support for iterative re�nement of linear system solutions.

For more details type help rat_krylov.

4 Moving poles of a rational Krylov spae

Relevant funtions: move_poles_expl, move_poles_impl
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There is a diret link between the starting vetor b and the poles ξj of a rational

Krylov spaeQm+1. A hange of the poles ξj to ξ̆j an be interpreted as a hange

of the starting vetor from b to b̆, and vie versa. Algorithms for moving the

poles of a rational Krylov spae are desribed in [2℄ and implemented in the

funtions move_poles_expl and move_poles_impl.

Example: Let us move the m = 5 poles −1,∞,−i, 0, and i into ξ̆j = −j,
j = 1, 2, . . . , 5.

N = 100;

A = gal lery('tridiag ', N);

b = eye(N, 1);

xi = [-1, inf , -1i, 0, 1i℄;

[V, K, H℄ = rat_krylov(A, b, xi);

xi_new = -1:-1:-5;

[KT , HT , QT , ZT℄ = move_poles_expl(K, H, xi_new );

The poles of a rational Krylov spae are the eigenvalues of the lower m × m
part of the penil (H̆m, K̆m) in a rational Arnoldi deomposition AV̆m+1K̆m =

V̆m+1H̆m assoiated with that spae [2℄. By transforming a rational Arnoldi

deomposition we are therefore e�etively moving the poles:

VT = V*QT ';

resnorm = norm(A*VT*KT - VT*HT)/norm(HT)

moved_poles = util_penil_poles (HT , KT).'

resnorm =

6.8685e-15

moved_poles =

-1.0000 e+00 + 1.0476e-16i

-5.0000e-01 - 2.1919e-16i

-3.3333e-01 - 1.7310e-16i

-2.5000e-01 - 2.7182e-16i

-2.0000e-01 + 3.3675e-16i

5 Rational Krylov �tting (RKFIT)

Relevant funtion: rkfit

RKFIT [2, 3℄ is an iterative Krylov-based algorithm for nonlinear rational ap-

proximation. Given two families of N × N matries {F [j]}ℓj=1 and {D[j]}ℓj=1,

a N × n blok of vetors B, and a N × N matrix A, the algorithm seeks a

family of rational funtions {r[j]}ℓj=1 of type (m+ k,m), all sharing a ommon

denominator qm, suh that the relative mis�t
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misfit =

√

√

√

√

∑ℓ
j=1 ‖D

[j][F[j]B− r[j](A)B]‖2F
∑ℓ

j=1 ‖D
[j]F[j]B‖2F

→ min

is minimal. The matries {D[j]}ℓj=1 are optional, and if not provided D[j] = IN
is assumed. The algorithm takes an initial guess for qm and iteratively tries to

improve it by reloating the poles of a rational Krylov spae.

We now show on a simple example how to use the rkfit funtion. Consider

again the tridiagonal matrix A and the vetor b from above and let F = A1/2
.

N = 100;

A = gal lery('tridiag ', N);

b = eye(N, 1);

F = sqrtm( f u l l (A));

exat = F*b;

Now let us �nd a rational funtion rm(z) of type (m,m) with m = 10 suh that

‖Fb − rm(A)b‖2/‖Fb‖2 is small. The funtion rkfit requires an input vetor

of m initial poles and then tries to return an improved set of poles. If we had no

lue about where to plae the initial poles we an easily set them all to in�nity.

In the following we run RKFIT at most 15 iterations of RKFIT and aim at

relative mis�t ‖Fv − rm(A)v‖2/‖Fv‖2 below 10−10
. We display the error after

eah iteration.

[xi , ratfun , misfit℄ = rk f i t (F, A, b, ...

repmat( inf , 1, 10), ...

15, 1e-10, 'real ');

misfit

misfit =

7.8110e-07 1.4769e-10 4.6371e-11

The rational funtion rm(A)b of type (10, 10) approximates A1/2
v to about

10 deimal plaes. A useful output of rkfit is the RKFUN objet ratfun

representing the rational funtion rm. It an be used, for example, to evaluate

rm(z):

� ratfun(A,v) evaluates rm(A)v as a matrix funtion times a vetor, or

� ratfun(z) evaluates rm(z) as a salar funtion in the omplex plane.

Here is a plot of the error |x1/2− rm(x)| over the spetral interval of A (approx-

imately [0, 4]), together with the values at the eigenvalues of A:
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f igure

ee = eig ( f u l l (A)).';

xx = sort ([ logspae (-4.3, 1, 500) , ee ℄);

loglog (xx ,abs( sqrt (xx) - ratfun(xx ))); hold on

loglog (ee ,abs( sqrt (ee) - ratfun(ee)), 'r.')

axis ([4e-4, 8, 1e-14, 1e -3℄); xlabel('x'); grid on

t i t l e ('| x^{1/2} - r_m(x) |','interpreter ','tex ')
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As expeted the rational funtion rm(z) is a good approximation of the square

root over [0, 4]. It is, however, not a uniform approximation beause we are ap-

proximately minimizing the 2-norm error on the eigenvalues of A, and moreover

we are impliitly using a weight funtion given by the omponents of b in A's
eigenvetor basis.

Additional features of RKFIT are listed below.

� An automated degree redution proedure is implemented; it takes plae

if a relative mis�t below tolerane is ahieved, unless deativated.

� Nondiagonal rational approximants are supported; an be spei�ed via an

additional param struture.

� Utility funtions are provided for transforming salar data appearing in

omplex-onjugate pairs into real-valued data, as explained in [3, Setion

3.5℄.

For more details type help rkfit.

Some of the apabilities of RKFUN are shown in the following setion.
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6 The RKFUN lass

The rkfun lass is the fundamental data type to represent and work with ra-

tional funtions. It has already been desribed above how to evaluate an rkfun

objet for salar and matrix arguments by alling ratfun(z) or ratfun(A,v),

respetively. There are more than 20 other methods implemented for rkfun,

and a list of all these an be obtained by typing help rkfun:

basis - Orthonormal rational basis funtions of a rkfun.

oeffs - Expansion oeffiients of an rkfun.

ontfra - Convert rkfun into ontinued fration form.

diff - Differentiate an rkfun.

disp - Display information about an rkfun.

double - Convert rkfun into double preision (undo vpa or mp).

ezplot - Easy-to-use funtion plotter.

feval - Evaluate rkfun at salar or matrix arguments.

isreal - Returns true if a rkfun is real.

minus - Salar subtration.

mp - Convert rkfun into Advanpix Multiple Preision format.

mrdivide - Salar division.

mtimes - Salar multipliation.

plus - Salar addition.

poles - Return the poles of an rkfun.

poly - Convert rkfun into a quotient of two polynomials.

residue - Convert a rkfun into partial fration form.

roots - Compute the roots of an rkfun.

size - Returns the size of an rkfun.

subsref - Evaluate an rkfun (alls feval).

type - Return the type (m+k,m) of an rkfun.

uminus - Unary minus.

uplus - Unary plus.

vpa - Convert rkfun into variable preision format.

The names of these methods should be self-explanatory. For example,

roots(ratfun) will return the roots of a ratfun, and residue will ompute

the partial fration form. Most methods support the use of MATLAB's Variable

Preision Arithmeti (VPA) or the Advanpix Multiple Preision toolbox (MP).

So, for example, ontfra(mp(ratfun)) will ompute a ontinued fration ex-

pansion of ratfun using multiple preision arithmeti. For more details on eah

of the methods, type help [name of method℄.
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