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1 Rational Krylov spaes

A rational Krylov spae is a linear vetor spae of rational funtions in a matrix

times a vetor [5℄. Let A be a square matrix of size N ×N , b an N × 1 nonzero

starting vetor, and let ξ1, ξ2, . . . , ξm be a sequene of omplex or in�nite poles

all distint from the eigenvalues of A. Then the rational Krylov spae of order

m+ 1 assoiated with A, b, ξj is de�ned as

Qm+1 ≡ Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Am
b},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the ommon denominator of the rational

funtions assoiated with Qm+1. The rational Krylov sequene method by Ruhe

[5℄ omputes an orthonormal basis Vm+1 of Qm+1. The �rst olumn of Vm+1

an be hosen as Vm+1e1 = b/‖b‖2. The basis matrix Vm+1 satis�es a rational

Arnoldi deomposition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unredued) upper Hessenberg penil of size (m+1)×m.
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2 The poles of a rational Krylov spae

Given a rational Arnoldi deomposition of the above form, it an be shown [1℄

that the poles ξj of the assoiated rational Krylov spae are the generalized

eigenvalues of the lower m × m subpenil of (Hm,Km). Let us verify this at

a simple example by �rst onstruting a rational Krylov spae assoiated with

the m = 5 poles −1,∞,−i, 0, i. The matrix A is of size N = 100 and hosen

as the tridiag matrix from MATLAB's gallery, and b is the �rst anonial

unit vetor. The rat_krylov ommand is used to ompute the quantities in

the rational Arnoldi deomposition:

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

m = 5;

xi = [-1, inf , -1i, 0, 1i℄;

[V, K, H℄ = rat_krylov (A, b, xi);

Indeed, the rational Arnoldi deomposition is satis�ed with a residual norm

lose to mahine preision:

format short e

norm (A*V*K - V*H) / norm (H)

ans =

4.1663e-15

And the hosen poles ξj are the eigenvalues of the lower m×m subpenil:

eig(H(2:m+1,1:m),K(2:m+1,1:m))

ans =

-1.0000 e+00 + 0.0000e+00i

Inf + 0.0000e+00i

0.0000e+00 - 1.0000e+00i

0.0000e+00 + 0.0000e+00i

0.0000e+00 + 1.0000e+00i

3 Moving the poles expliitly

There is a diret link between the starting vetor b and the poles ξj of a rational

Krylov spaeQm+1. A hange of the poles ξj to ξ̆j an be interpreted as a hange

of the starting vetor from b to b̆, and vie versa. Algorithms for moving the

poles of a rational Krylov spae are desribed in [1℄ and implemented in the

funtions move_poles_expl and move_poles_impl.
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For example, let us move the poles of the above rational Krylov spae Qm+1 to

the points −1,−2, . . . ,−5:

xi_new = -1:-1:-5;

[KT , HT , QT , ZT℄ = move_poles_expl (K, H, xi_new );

The output of move_poles_expl are unitary matriesQ and Z, and transformed

upper Hessenberg matries K̆m = QKmZ and H̆m = QHmZ, so that the lower

m×m part of the penil (H̆m, K̆m) has as generalized eigenvalues the new poles

ξ̆j :

eig(HT (2:m+1,1:m),KT (2:m+1,1:m))

ans =

-1.0000 e+00 + 0.0000e+00i

-2.0000 e+00 + 8.7675e-16i

-3.0000 e+00 + 1.5579e-15i

-4.0000 e+00 + 4.3491e-15i

-5.0000 e+00 - 8.4187e-15i

De�ning V̆m+1 = Vm+1Q
∗
, the transformed rational Arnoldi deomposition is

AV̆m+1K̆m = V̆m+1H̆m.

This an be veri�ed numerially by looking at the residual norm:

VT = V*QT ';

norm (A*VT*KT - VT*HT) / norm(HT)

ans =

6.8685e-15

It should be noted that the funtion move_poles_expl an be used to move

the m poles to arbitrary loations, inluding to in�nity, and even to the eigen-

values of A. In latter ase, the transformed spae V̆m+1 does not orrespond

to a rational Krylov spae generated with starting vetor V̆m+1e1 and poles ξ̆j ,
but must be interpreted as a �ltered rational Krylov spae. Indeed, the pole

reloation problem is very similar to that of applying an impliit �lter to the

rational Krylov spae [3,4℄. See also [1℄ for more details.

4 Moving the poles impliitly

Assume we are given a nonzero vetor b̆ ∈ Qm+1 with oe�ient represen-

tation b̆ = Vm+1c, where c is a vetor with m + 1 entries. The funtion
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move_poles_impl an be used to obtain a transformed rational Arnoldi deom-

position with starting vetor b̆.

As an example, let us take c = [0, . . . , 0, 1]T and hene transform the rational

Arnoldi deomposition so that V̆m+1e1 = vm+1, the last basis vetor in Vm+1:

 = zeros(m+1 ,1); (m+1) = 1;

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, );

VT = V*QT ';

The poles of the rational Krylov spae with the modi�ed starting vetor an

again be read o� as the generalized eigenvalues of the lower m × m part of

(H̆m, K̆m):

eig(HT (2:m+1,1:m),KT (2:m+1,1:m))

ans =

3.2914e+00 - 5.5756e-02i

1.8705e+00 - 1.2100e-01i

7.7852e-01 - 9.2093e-02i

1.9752e-01 - 3.0824e-02i

4.4392e-03 - 3.5884e-04i

This impliit pole reloation proedure is key element of the RKFIT algorithm

desribed in [1,2℄.

5 Some fun with moving poles

To onlude this example, let us onsider a 10× 10 random matrix A, a random
vetor b, and the orresponding 6-dimensional rational Krylov spae with poles

at −2,−1, 0, 1, 2:

A = (randn (10) + 1i*randn (10))*.5;

b = randn(10 ,1) + 1i*randn(10 ,1);

m = 5;

xi = -2:2; % initial poles

[V, K, H℄ = rat_krylov (A, b, xi);

Here are the eigenvalues of A:

figure

plot (eig(A),'ko','MarkerFaeColor ','y')

axis ([ -2.5 ,2.5 , -2.5 ,2.5℄) , grid on , hold on
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We now onsider a t-dependent oe�ient vetor c(t) suh that Vm+1c(t) is

ontinuously "morphed" from v1 to v2. The poles of the rational Krylov spae

with the transformed starting vetor Vm+1c(t) are then plotted as a funtion of

t.

for t = linspae (1,2,51),

 = zeros(m+1 ,1);

(floor(t)) = os(pi*(t-floor(t))/2);

(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, );

% transformed penil

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m))); % new poles

plot (real(xi_new),imag (xi_new),'b+')

end
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As one an see, only one of the �ve poles starts moving away from −2, with the

remaining four poles staying at their positions. This is beause "morphing" the

starting vetor from v1 to v2 only a�ets a two-dimensional subspae of Qm+1

whih inludes the vetor b and is itself a rational Krylov spae, and this spae

is parameterized by one pole only.

As we now ontinue morphing from v2 to v3, another pole starts moving:

for t = linspae (2,3,51),

 = zeros(m+1 ,1);

(floor(t)) = os(pi*(t-floor(t))/2);

(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, );

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m)));

plot (xi_new ,'r+')

end
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Morphing from v3 to v4, then to v5, and �nally to v6 will eventually a�et all

�ve poles of the rational Krylov spae:

for t = linspae (3 ,5.99 ,150) ,

 = zeros(m+1 ,1);

(floor(t)) = os(pi*(t-floor(t))/2);

(floor(t)+1) = sin(pi *(t-floor(t))/2);

[KT , HT , QT , ZT℄ = move_poles_impl (K, H, );

xi_new = sort (eig(HT (2:m+1,1:m),KT (2:m+1,1:m)));

swith floor(t),

ase 3, plot (xi_new ','g+')

ase 4, plot (xi_new ','m+')

ase 5, plot (xi_new ','+')

end

end
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