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1 Introdution

Let A be a matrix of size N × N , b an N × 1 vetor, and m a positive inte-

ger. The polynomial Krylov spae of order m + 1 is de�ned as Km+1(A, b) =
span{b, Ab, . . . , Am

b}. For simpliity we assume that Km+1(A, b) is of full di-
mension m+ 1.

Let Vm+1 be an orthonormal matrix of size N × (m+ 1) suh that the leading

j olumns Vj form a basis for Kj(A, b) for j = 1, 2, . . . ,m + 1. It follows from
the impliit Q theorem that the projetion Hm+1 = V ∗

m+1AVm+1 is an upper

Hessenberg matrix; that is, all the elements below the �rst subdiagonal of Hm+1

are zero. Moreover, if the matrix A is symmetri so is the projetion Hm+1,

and hene it is tridiagonal.

Below we visualize the aforementioned struture for a symmetri matrix (the

plot on the left), and for a nonsymmetri matrix (the plot on the right).

N = 200;

m = 20;

% Polynomial Krylov spae; infinite poles.

xi = inf(1,m);

% Symmetri matrix.

A = gallery('tridiag ', N);

b = sum(eye(N, 15), 2);

V = rat_krylov (A, b, xi);

T = V'*A*V;
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% Nonsymmteri matrix.

A = gallery('grar', N);

V = rat_krylov (A, b, xi);

H = V'*A*V;

figure(1), olormap ('opper')

subplot (121) , images (log10(abs(T)))

olorbar , set(ga ,'CLim ' ,[-15,0℄); axis square

title('log of the entries of |T|')

subplot (122) , images (log10(abs(H)))

olorbar , set(ga ,'CLim ' ,[-15,0℄); axis square

title('log of the entries of |H|')
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The aim of this note is to review the struture of the projetion V ∗

m+1AVm+1

of A onto more general Krylov spaes; namely, rational Krylov spaes

Qm+1(A, b, qm), whih are de�ned in the next setion. This struture has been

studied, e.g., in [2, 4, 5, 8℄.

2 Rational Krylov spae

Let qm be a polynomial of degree at most m with roots disjoint from the

spetrum of A. The rational Krylov spae Qm+1(A, b, qm) is de�ned as

Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Am
b}. The roots of qm are alled

poles of the rational Krylov spae. If qm is a onstant nonzero polynomial we

reover the polynomial Krylov spae.

3 Semiseparable matries

Let us look at the projetion Sm+1 = V ∗

m+1AVm+1 for a symmetri matrix A

and Vm+1 forming a basis for Qm+1(A, b, qm) with qm(z) = zm, i.e., a rational

Krylov spae with all poles equal to 0.

A = gallery('tridiag ', N) + speye(N);

xi = zeros(1,m);
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V = rat_krylov (A, b, xi);

S = V'*A*V;

figure(2), olormap ('opper')

images(log10(abs(S)))

olorbar , set(ga , 'CLim ', [-15, 0℄); axis square

title('log of the entries of |S|')

log of the entries of |S|
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The projetion is not tridiagonal, but it is semiseparable! A semiseparable

matrix is one for whih any submatrix onsisting of elements in the stritly

lower (upper, due to symmetry in this ase) part is of rank at most 1.

disp ([ rank (S(3:m, 1:2), 1e-15), ...

rank (S(4:m, 1:3), 1e-15), ...

rank (S(7:12 , 1:4), 1e -15)℄)

1 1 1

Note that Sm+1 is nonsingular and its inverse is tridiagonal.

figure(3), olormap ('opper')

images(log10(abs(S\eye(m+1))))

olorbar , set(ga , 'CLim ', [-15, 0℄); axis square

title('log of the entries of |inv(S)|')

3



log of the entries of |inv(S)|
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4 Semiseparable plus diagonal matries

We now onsider a more general rational Krylov spae, having both �nite and

in�nite poles. The ordering of the poles is irrelevant for the �nal spae, but the

struture of the projetion may hange depending on it.

Spei�ally, we look at a rational Krylov spae with m = 12 poles ξj appearing

in four groups. The �rst group onsists of three poles at in�nity, the seond

ontains three �nite poles, two in�nite poles make the third group, and in the

fourth there are four �nite poles. The matrix A is hosen as nonsymmetri.

A = gallery('grar', N);

xi = [inf , inf , inf , ...

-20, -10, 80, ...

inf , inf , ...

-20, 80, 80, -50℄;

The struture of V ∗

m+1AVm+1 is related to the pole groups. De�ne the diagonal

matrix of poles Dm+1 by setting d1 = 0, and dj+1 = ξj if ξj 6= ∞ or dj+1 = 0
if ξj = ∞, for j = 1, . . . ,m. Then the matrix Sm+1 = V ∗

m+1AVm+1 −Dm+1 is

semiseparable.

[V, K, H℄ = rat_krylov (A, b, xi);
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S = V'*A*V;

D = diag ([0 xi℄); D(D == inf) = 0;

S = S - D;

figure(4), olormap ('opper')

images(log10(abs(S)))

olorbar , set(ga , 'CLim ', [-15, 0℄); axis square

title('log of the entries of |S|')

log of the entries of |S|
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For eah of the four pole groups there is a orresponding submatrix of Sm+1.

The submatries lie on the diagonal of Sm+1 and share 2 × 2 orner(s) with

the neighbouring bloks. The two submatries orresponding to the two groups

with in�nite poles are upper-Hessenberg, and the other two are inverse upper-

Hessenberg.

l1 = line ([0, 0, 5, 5, 0℄+.5 , [0, 5, 5, 0, 0℄+.5);

l2 = line ([3, 3, 8, 8, 3℄+.5 , [3, 8, 8, 3, 3℄+.5);

l3 = line ([6, 6, 10, 10, 6℄+.5 , [6, 10, 10, 6, 6℄+.5);

l4 = line ([8, 8, 13, 13, 8℄+.5 , [8, 13, 13, 8, 8℄+.5);

set([l1 ,l2 ,l3 ,l4℄,'LineWidth ' ,3)

set(l1 ,'Color','r'), set(l2 ,'Color','g')

set(l3 ,'Color','m'), set(l4 ,'Color','b')

set(ga , 'XTik', 1:13,'YTik' ,1:13)
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In the following plot we show the inverses of the seond and fourth blok, to

on�rm that they are indeed upper Hessenberg matries.

figure(5), olormap ('opper')

subplot (121)

imgsi = �(X, ii) images(log10(abs(X(ii , ii)\eye(length(ii )))));

imgsi(S, 4:8), set(ga ,'CLim ' ,[-15,0℄); axis square

set(ga , 'XTik' ,1:5,'XTikLabel ' ,4:8,'YTik' ,1:5,'YTikLabel ' ,4:8)

title('|inv(S(4:8, 4:8))|')

subplot (122)

imgsi(S, 9:13) , set(ga ,'CLim ' ,[-15,0℄); axis square

set(ga ,'XTik' ,1:5,'XTikLabel ' ,9:13, 'YTik' ,1:5,'YTikLabel ' ,9:13)

title('|inv(S(9:13 , 9:13))| ')
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We now reloate the poles of the above rational Krylov spae, as desribed in

[1℄, and visualize the semiseparable struture. We take 6 groups of poles and

an spot the orresponding overlapping upper-Hessenberg and inverse upper-

Hessenberg bloks.

xi_new = [-20, -30, ...

inf , inf , inf , ...

-30, -20, ...

inf , inf , ...

-30, ...

inf , inf℄;

D_new = diag ([0 xi_new ℄); D_new(D_new == inf) = 0;

[~, ~, Q℄ = move_poles_expl (K, H, xi_new);

S = Q*(S+D)*Q'-D_new;

figure(6), olormap ('opper')

images(log10(abs(S))), olorbar , set(ga , 'CLim ', [-15, 0℄); axis square

title('log of the entries of |S|')
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The onnetion between rational Krylov spaes and semiseparable (plus diag-

onal) matries has been used, for instane, for the development of short re-

urrenes in rational quadrature rules, see e.g. [3, 6℄ and the referenes given

therein. In [4, 5℄ the authors used it to approximate a rational Krylov spae

from a larger polynomial Krylov spae. The examples shown here are for rather

small matries and low-dimensional rational Krylov spaes. For larger exam-

ples the semiseparable struture is often obsured by numerial roundo� and

not reliably exploited, whih is one of the reasons we prefer to work with the

upper-Hessenberg representations for rational Krylov spaes, see e.g. [1, 7℄.

The following ommand is used to reate a thumbnail.

figure(4), olorbar off , axis square , axis off
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