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1 Rational Krylov spaces

A rational Krylov space is a linear vector space of rational functions in a matrix
times a vector [5]. Let A be a square matrix of size N x N, b an N x 1 nonzero
starting vector, and let &1,&s, ..., &, be a sequence of complex or infinite poles
all distinct from the eigenvalues of A. Then the rational Krylov space of order
m + 1 associated with A, b,¢; is defined as

Qm+1 = Qm-‘rl(Aa ba Qm) = qm(A)_lspa'n{baAba R Amb}a

where ¢,,(z) = H?:ng 4oo(# — &) is the common denominator of the rational
functions associated with Q,,,+1. The rational Krylov sequence method by Ruhe
[5] computes an orthonormal basis V;,+1 of Q,,41. The first column of V41
can be chosen as V,,y1e; = b/||b||2. The basis matrix V;,,41 satisfies a rational
Arnoldi decomposition of the form

AVm-{-lﬁ = m—i—lha

where (Hy,, Ky ) is an (unreduced) upper Hessenberg pencil of size (m+1) x m.



2 The poles of a rational Krylov space

Given a rational Arnoldi decomposition of the above form, it can be shown [1]
that the poles &; of the associated rational Krylov space are the generalized
eigenvalues of the lower m x m subpencil of (H,,, Kyn). Let us verify this at
a simple example by first constructing a rational Krylov space associated with
the m = 5 poles —1,00,—1,0,i. The matrix A is of size N = 100 and chosen
as the tridiag matrix from MATLAB’s gallery, and b is the first canonical
unit vector. The rat_krylov command is used to compute the quantities in
the rational Arnoldi decomposition:

100;

gallery('tridiag', N);

= eye(N, 1);

= 5;

xi = [-1, inf, -1i, 0, 1il;

[V, K, H] = rat_krylov(A, b, xi);
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Indeed, the rational Arnoldi decomposition is satisfied with a residual norm
close to machine precision:

format short e
norm (A*V*K - V*H) / norm(H)

ans =
4.1663e-15

And the chosen poles &; are the eigenvalues of the lower m x m subpencil:

eig(H(2:m+1,1:m) ,K(2:m+1,1:m))

ans =
-1.0000e+00 + 0.0000e+001
Inf + 0.0000e+001
0.0000e+00 - 1.0000e+001i
0.0000e+00 + 0.0000e+001i
0.0000e+00 + 1.0000e+001

3 Moving the poles explicitly

There is a direct link between the starting vector b and the poles &; of a rational
Krylov space Q,,+1. A change of the poles ¢; to fuj can be interpreted as a change
of the starting vector from b to b, and vice versa. Algorithms for moving the
poles of a rational Krylov space are described in [1] and implemented in the
functions move_poles_expl and move_poles_impl.



For example, let us move the poles of the above rational Krylov space Q,,+1 to
the points —1,—2,...,—b5:

xi_new = -1:-1:-5;
[KT, HT, QT, ZT] = move_poles_expl (K, H, xi_new);

The output of move_poles_expl are unitary matrices (Q and Z, and transformed
upper Hessenberg matrices K., = QK,,Z and H,,, = QH,,Z, so that the lower

m X m part of the pencil (@ , &) has as generalized eigenvalues the new poles

3t

eig(HT(2:m+1,1:m) ,KT(2:m+1,1:m))

ans =
-1.0000e+00 + 0.0000e+001
-2.0000e+00 + 8.7675e-161i
-3.0000e+00 + 1.5579e-151i
-4.0000e+00 + 4.3491e-151i
-5.0000e+00 8.4187e-151

Defining ‘V/m+1 = Vi41Q*, the transformed rational Arnoldi decomposition is

A‘vfmﬂ& = vmﬂ@-

This can be verified numerically by looking at the residual norm:

VT = V*QT';
norm (A*VT*KT - VT*HT) / norm(HT)

ans =
6.8685e-15

It should be noted that the function move_poles_expl can be used to move
the m poles to arbitrary locations, including to infinity, and even to the eigen-
values of A. In latter case, the transformed space ‘V/mﬂ does not correspond
to a rational Krylov space generated with starting vector Vm+1 e; and poles «Ej,
but must be interpreted as a filtered rational Krylov space. Indeed, the pole
relocation problem is very similar to that of applying an implicit filter to the
rational Krylov space [3,4]. See also [1] for more details.

4 Moving the poles implicitly

Assume we are given a nonzero vector b € Q,,+1 with coefficient represen-
tation b = V,,411¢, where ¢ is a vector with m + 1 entries. The function



move_poles_impl can be used to obtain a transformed rational Arnoldi decom-
position with starting vector b.

As an example, let us take ¢ = [0,...,0,1]7 and hence transform the rational
Arnoldi decomposition so that V,,11e1 = v,41, the last basis vector in V,,,41:

¢ = zeros(m+1,1); c(m+1l) = 1;
[KT, HT, QT, ZT] = move_poles_impl (XK, H, c);
VT = V*QT';

The poles of the rational Krylov space with the modified starting vector can
again be read off as the generalized eigenvalues of the lower m x m part of
(Hons Kom):

eig(HT(2:m+1,1:m) ,KT(2:m+1,1:m))

ans =
3.2914e+00 - 5.5756e-02i
1.8705e+00 - 1.2100e-011i
7.7852e-01 - 9.2093e-021i
1.9752e-01 - 3.0824e-02i
4.4392e-03 - 3.5884e-041i

This implicit pole relocation procedure is key element of the RKFIT algorithm
described in [1,2].

5 Some fun with moving poles

To conclude this example, let us consider a 10 x 10 random matrix A, a random
vector b, and the corresponding 6-dimensional rational Krylov space with poles
at —2,-1,0,1,2:

A = (randn(10) + 1li*randn(10))*.5;
b = randn(10,1) + 1i*randn(10,1);
m = 5;

xi = -2:2; J initial poles

[V, K, H] = rat_krylov(A, b, xi);
Here are the eigenvalues of A:
figure

plot (eig(A), 'ko', 'MarkerFaceColor','y")
axis([-2.5,2.5,-2.5,2.5]), grid on, hold on
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We now consider a t-dependent coefficient vector ¢(t) such that Vj,11¢(t) is
continuously "morphed" from v; to vs. The poles of the rational Krylov space
with the transformed starting vector V,,,11¢(t) are then plotted as a function of
L.

for t = linspace(1,2,51),
c = zeros(m+1,1);
c(floor(t)) = cos(pi*(t-floor(t))/2);
c(floor(t)+1) = sin(pi*(t-floor(t))/2);
[KT, HT, QT, ZT] = move_poles_impl (K, H, c);
% transformed pencil
xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m))); % new poles
plot (real (xi_new) ,imag(xi_new), 'b+"')
end
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As one can see, only one of the five poles starts moving away from —2, with the
remaining four poles staying at their positions. This is because "morphing" the
starting vector from v; to ve only affects a two-dimensional subspace of Q11
which includes the vector b and is itself a rational Krylov space, and this space
is parameterized by one pole only.

As we now continue morphing from v, to vs, another pole starts moving:

for t = linspace(2,3,51),
c = zeros(m+1,1);
c(floor(t)) = cos(pi*(t-floor(t))/2);
c(floor(t)+1) = sin(pi*(t-floor(t))/2);
[KT, HT, QT, ZT] = move_poles_impl (K, H, c);
xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)));
plot (xi_new,'r+')

end
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Morphing from w3 to vy, then to vs, and finally to vg will eventually affect all
five poles of the rational Krylov space:

for t = linspace (3,5.99,150),
c = zeros(m+1,1);
c(floor(t)) = cos(pi*(t-floor(t))/2);
c(floor(t)+1) = sin(pi*x(t-floor(t))/2);
[KT, HT, QT, ZT] = move_poles_impl (K, H, c);
xi_new = sort(eig(HT(2:m+1,1:m),KT(2:m+1,1:m)));
switch floor(t),

case 3, plot(xi_new','g+')
case 4, plot(xi_new', 'm+")
case 5, plot(xi_new','c+')

end
end
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