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1 Introdution

This toolbox omes with an implementation of a lass alled rkfun, whih is the

fundamental data type to represent and work with rational funtions. Objets

of this lass are produed by the rkfit funtion (desribed in [2,3℄), whih in

its simplest use ase attemts to �nd a rational funtion r suh that

‖Fb − r(A)b‖2 → min,

where A,F are square matries and b is a vetor of ompatible sizes. For

example, let us onsider A = tridiag(−1, 2,−1), b = [1, 0, . . . , 0]T , and F =
(A−2I)2(A2−I)−1(A−4I)−1

. We know that r(z) = (z−2)2(z2−1)−1(z−4)−1

is a minimizer for the above problem. Let us try to �nd it via RKFIT:

N = 100;

A = gallery('tridiag ',N);

I = speye(N);
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F = (A - 2*I)^2* inv(A^2 - I)*inv(A - 4*I);

b = eye(N ,1);

xi = inf*ones (1 ,5); % initial poles at infinity

maxit = 5; tol = 1e -10;

[xi ,ratfun ,misfit℄ = rkfit(F,A,b,xi ,maxit ,tol ,'real ');

As we started with m = 5 initial poles (at in�nity), RKFIT will searh for a

rational funtion r of type (5, 5). When more than 1 iteration is performed and

the tolerane tol is not hosen too small, RKFIT will try to redue the type of

the rational funtion while still maintaining a relative mis�t below the tolerane,

i.e., ‖Fb − r(A)b‖2 ≤ tol‖Fb‖2. Indeed, a redution has taken plae and the

type has been redued to (2, 3), as an be seen from the following output:

ratfun

ratfun =

RKFUN objet of type (2 ,3).

Real Hessenberg penil (H,K) of size 4-by -3.

oeffs = [ -0.0869, -0.394, 1.33, 1.5 ℄

We an now perform various operations on the ratfun objet, all implemented

as methods of the lass rkfun. To see a list of all methods just type help rkfun.

We will now disuss some methods in more detail.

2 Evaluating an rkfun

We an easily evaluate r(z) at any point (or many points) in the omplex plane.

The following ommand will evaluate r(2) and r(3 + i) simultaneously:

format long

ratfun ([2 ; 3+1i℄)

ans =

-0.000000000000652 + 0.000000000000000 i

0.011764705881620 - 0.152941176470453 i

We an also evaluate r as a matrix funtion, i.e., omputing r(M)B for matries

M and B, by using two input arguments. For example, by setting B = I we

e�etively ompute the full matrix funtion r(M):

M = [ 3 , 1 ; 0 , 3 ℄;

B = eye (2);

R = ratfun(M,B)

R =

-0.125000000000608 -0.281249999999790

0 -0.125000000000608
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3 Plotting

As r an be evaluated at any point in the omplex plane, it is straightforward

to produe plots of this funtion. For example, here is a ontour plot of log
10

|r|
over the omplex region [−2, 5]× [−1, 1]i:

figure (1)

[X,Y℄ = meshgrid ( -2:.01:5, -1:.01:1); Z = X + 1i*Y;

R = ratfun(Z);

ontourf (X,Y,log10(abs(R)) , -4:.5:2)

olormap hsv , olorbar
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Another ommand ezplot an be used to get a quik idea of how ratfun looks

over an interval on the real axis, in this ase, [−2, 5]:

figure (2)

ezplot(ratfun ,[-2,5℄)

ylim ([-5,5℄)

grid on
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4 Pole- and root-�nding

From the above plot we guess that r has poles at x = ±1 and x = 4 and a root

at x = 2, whih is to be expeted from the de�nition of r. The two ommands

poles and roots do exatly what their names suggest:

pls = poles(ratfun)

rts = roots(ratfun)

pls =

-0.999999999987786

1.000000000000003

3.999999999999999

rts =

1.999999999997977 + 0.000001978069056 i

1.999999999997977 - 0.000001978069056 i

As expeted from a type (2,3) rational funtion, there are two roots and three

poles. Note that the pole at x = −1 is identi�ed with slightly less auray than

the poles at x = 1 and x = 4. This is beause the point x = −1 is outside the

spetral interval of A and hene sampled less aurately. Also the double root

at x = 2 is identi�ed up to an auray of ≈ 10−7
only. This is not surprising

as the funtion is �at nearby multiple roots. However, the bakward error of

the roots is small:

ratfun(rts)
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ans =

1.0e-16 *

-0.277555756156289 - 0.000000926442286 i

-0.277555756156289 + 0.000000926442286 i

5 Basi arithmeti operations and di�erentiation

We have implemented some very basi operations on rkfun's, namely, the mul-

tipliation by a salar and the addition of a salar. The result of suh operations

is again an rkfun objet. For example, the following ommand omputes points

z where 2r(z) = π:

z = roots(2* ratfun - pi)

ratfun(z)

z =

-0.405042315578132

0.857694376021649

ans =

1.570796326794891

1.570796326794892

We have urrently not implemented the summation and multipliation of two

rkfun's, though this is doable in priniple. However, we an already di�erentiate

a rational funtion using the diff ommand. The following will �nd all loal

extrema of r by omputing the roots of r′:

extrema = roots(diff (ratfun ))

extrema =

0.407592767463221 + 0.000000000000000 i

2.000000097271605 + 0.000000000000000 i

2.796203354877036 + 2.627131418477983 i

2.796203354877036 - 2.627131418477983 i

There are two real extrema whih we an add to the above plot of r:

figure(2), hold on

plot (extrema (1:2) , ratfun(extrema (1:2)) , 'ro')
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The syntax and "feel" of these omputations is inspired by the Chebfun sys-

tem [4℄, whih represents polynomials via Chebyshev interpolants and allows for

many more operations to be performed than our rkfun implementation. Here

we are representing rational funtions through their oe�ients in a disrete-

orthogonal rational funtion basis. Working with rational funtions poses some

hallenges not enountered with polynomials. For example, the inde�nite inte-

gral of a rational funtion is not neessarily a rational funtion but may ontain

logarithmi terms.

6 Multiple preision omputations

Objets of lass rkfun an be onverted to MATLAB's Variable Preision Arith-

meti (VPA) as follows:

vpa(ratfun)

ans =

RKFUN objet of type (2 ,3).

Real Hessenberg penil (H,K) of size 4-by -3.

Variable preision arithmeti (VPA) ativated .

oeffs = [ -0.0869, -0.394, 1.33, 1.5 ℄

Alternatively, we an also use the Advanpix Multiple Preision (MP) toolbox

[1℄, whih is typially more e�ient and reliable than VPA. We reommend the

use of this toolbox in partiular for high-preision root-�nding of rkfun's and

onversion to partial fration form:

ratfun = mp(ratfun)
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ratfun =

RKFUN objet of type (2 ,3).

Real Hessenberg penil (H,K) of size 4-by -3.

Multiple preision arithmeti (ADVANPIX ) ativated .

oeffs = [ -0.0869, -0.394, 1.33, 1.5 ℄

When evaluating a multiple preision ratfun, the result will be returned in mul-

tiple preision:

ratfun ([2 ; 3+1i℄)

ans =

Columns 1 through 1

-6.521407633963269531711066028972582 e-13 +

0i

0.01176470588161970845424599198647489 -

0.1529411764704525251545782810173116i

It is important to understand that, although the evaluation of ratfun is now

done in multiple preision, the omputation of ratfun using the rkfit ommand

has been performed in standard double preision. rkfit does not urrently

support the omputation of rkfun's in multiple preision. Here are the roots of

ratfun omputed in multiple preision:

roots(mp(ratfun ))

ans =

Columns 1 through 1

1.999999999997976903935247243973727 +

1.978091145620438303477365614366126e-06i

1.999999999997976903935247243973727 -

1.978091145620438303477365614366126e-06i

7 Conversion to partial fration form

It is often onvenient to onvert a rational funtion r into its partial fration

form

r(z) = α0 +
α1

z − ξ1
+ · · ·+

αm

z − ξm
.
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The residue ommand of our toolbox performs suh a onversion. Currently,

this only works when the poles ξj of r are distint and r is not of superdiagonal
type (i.e., there is no linear term in r). As the onversion to partial fration

form an be an ill-onditioned transformation, we reommend to use residue

in onjuntion with the multiple preision feature. Here are the poles ξj and

residues αj (j = 1, . . . ,m), as well as the absolute term α0, of the funtion r
de�ned above:

[alpha ,xi ,alpha0 ,nd℄ = residue (mp(ratfun ));

double([xi , alpha℄)

double(alpha0)

ans =

-0.999999999987786 0.899999999994009

1.000000000000003 -0.166666666666637

3.999999999999999 0.266666666666479

ans =

7.839257895180645 e-17

The absolute term is lose to zero beause r is of subdiagonal type. The output
nd of residue orresponds to the ondition number of the transformation to

partial fration form. In this ase of a low-order rational funtion with well

separated poles the ondition number is atually quite moderate:

nd

nd =

56.150570383900494

8 Conversion to quotient and ontinued fration

form

Our toolbox also implements the onversion of a rkfun to quotient form r = p/q
with two polynomials p and q given in the monomial basis. As with the on-

version to partial fration form, we reommend performing this transformation

in multiple preision arithmeti due to potential ill-onditioning. Here we on-

vert r into the p/q form and evaluate it at x = 2 using MATLAB's polyval

ommand:

[p,q℄ = poly(mp(ratfun ));

polyval(p ,2)./ polyval (q,2)
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ans =

-6.521407633963268813219344592076603 e-13 +

1.70453894581974954056894790

3587348e-52i

A rkfun an also be onverted into ontinued fration form

1

r(z) = -------------------------------------------------------- + absterm

hh(1)*z + 1

----------------------------------------------

h(1) + 1

---------------------------------------

hh(2)*z +...+ 1

-------------------------

h(m-1) + 1

----------------

hh(m)*z + 1/h(m)

as follows:

[h,hh ,absterm ,nd℄ = ontfra (mp(ratfun ));

That's it for this tutorial. Note that more methods will be added over time and

we'd be happy to reeive any feedbak or bug reports. For more details about

the internal representation of rkfun, see [3℄.

The following ommand merely reates a nie thumbnail.

figure(1), hold on , plot (NaN) % reate thumbnail
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