
A Rational Krylov Toolbox for MATLAB

Mario Berljafa∗ Stefan Güttel∗

March 6, 2016

Contents

1 Overview 1

2 Rational Krylov spaces 1

3 Computing rational Krylov bases 2

4 Moving poles of a rational Krylov space 3

5 Rational Krylov fitting (RKFIT) 4

6 The RKFUN class 6

7 References 7

1 Overview

Thank you for your interest in the Rational Krylov Toolbox (RKToolbox). The RKTool-
box is a collection of scientific computing tools based on rational Krylov techniques. The
development started in 2013 and the current version 2.3 provides

� an implementation of Ruhe’s rational Krylov sequence method [5, 6], allowing to con-
trol various options, including user-defined inner products, exploitation of complex-
conjugate shifts, orthogonalization, and rerunning [4],

� algorithms for the implicit and explicit relocation of the poles of a rational Krylov
space [3],

� a collection of utility functions, e.g., for solving nonlinear eigenvalue problems,
� an implementation of RKFIT [3, 4], a robust algorithm for rational L2 approxima-

tion, including automated degree reduction, and
� the RKFUN class [4] allowing for numerical computations with rational functions,

including support for MATLAB Variable Precision Arithmetic and the Advanpix
Multiple Precision toolbox [1].

∗School of Mathematics, The University of Manchester, Alan Turing Building, Oxford Road, M13 9PL
Manchester, United Kingdom, m.berljafa@maths.man.ac.uk, stefan.guettel@manchester.ac.uk

1



This guide explains the main functionalities of the toolbox. To run the embedded MAT-
LAB codes the RKToolbox needs to be in MATLAB’s search path. For details about the
installation we refer to the Download section on http://rktoolbox.org/.

2 Rational Krylov spaces

A rational Krylov space is a linear vector space of rational functions in a matrix times
a vector. Let A be a square matrix of size N × N , b an N × 1 starting vector, and let
ξ1, ξ2, . . . , ξm be a sequence of complex or infinite poles all distinct from the eigenvalues
of A. Then the rational Krylov space of order m+ 1 associated with A, b, ξj is defined as

Qm+1(A, b, qm) = qm(A)−1span{b, Ab, . . . , Amb},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the common denominator of the rational functions

associated with the rational Krylov space. The rational Krylov method by Ruhe [5, 6]
computes an orthonormal basis Vm+1 of Qm+1(A, b, qm). The basis matrix Vm+1 satisfies
a rational Arnoldi decomposition of the form

AVm+1Km = Vm+1Hm,

where (Hm, Km) is an (unreduced) upper Hessenberg pencil of size (m+ 1)×m.

Rational Arnoldi decompositions are useful for several purposes. For example, the eigen-
values of the upper m×m part of the pencil (Hm, Km) can be excellent approximations to
some of A’s eigenvalues [5, 6]. Other applications include matrix function approximation
and rational quadrature, model order reduction, matrix equations, nonlinear eigenprob-
lems, and rational least squares fitting (see below).

3 Computing rational Krylov bases

Relevant functions: rat krylov, util cplxpair

Let us compute Vm+1, Km, and Hm using the rat krylov function, and verify that the
outputs satisfy the rational Arnoldi decomposition by computing the relative residual
norm ‖AVm+1Km − Vm+1Hm‖2/‖Hm‖2. For A we take the tridiag matrix of size 100
from MATLAB’s gallery, and b = [1, 0, . . . , 0]T . The m = 5 poles ξj are, in order,
−1,∞,−i, 0, i.

N = 100; % matrix size

A = gallery('tridiag ', N);

b = eye(N, 1); % starting vector

xi = [-1, inf , -1i, 0, 1i]; % m = 5 poles

[V, K, H] = rat_krylov(A, b, xi);

resnorm = norm(A*V*K - V*H)/norm(H) % residual check

resnorm =

4.1662e-15

As some of the poles ξj in this example are complex, the matrices Vm+1, Km, and Hm are
complex, too:

2

http://rktoolbox.org/


disp([ isreal(V), isreal(K), isreal(H)])

0 0 0

However, the poles ξj can be reordered so that complex-conjugate pairs appear next to
each other using the function util cplxpair. After reordering the poles, we can call the
function rat krylov with the ’real’ option, thereby computing a real-valued rational
Arnoldi decomposition [5].

% Group together poles appearing in complex -conjugate pairs.

xi = util_cplxpair(xi);

[V, K, H] = rat_krylov(A, b, xi, 'real ');

resnorm = norm(A*V*K - V*H)/norm(H)

disp([ isreal(V), isreal(K), isreal(H)])

resnorm =

6.4056e-15

1 1 1

Our implementation rat krylov supports many features not shown in the basic descrip-
tion above.

� It is possible the use matrix pencils (A,B) instead of a single matrix A. This leads
to decompositions of the form AVm+1Km = BVm+1Hm.

� Both the matrix A and the pencil (A,B) can be passed either explicitly, or implicitly
by providing function handles to perform matrix-vector products and to solve shifted
linear systems.

� Non-standard inner products for constructing the orthonormal bases are supported.
� One can choose between CGS and MGS with or without reorthogonalization.
� Iterative refinement for the linear system solves is supported.

For more details type help rat krylov.

4 Moving poles of a rational Krylov space

Relevant functions: move poles expl, move poles impl

There is a direct link between the starting vector b and the poles ξj of a rational Krylov

space Qm+1. A change of the poles ξj to ξ̆j can be interpreted as a change of the start-

ing vector from b to b̆, and vice versa. Algorithms for moving the poles of a rational
Krylov space are described in [3] and implemented in the functions move poles expl and
move poles impl.

Example: Let us move the m = 5 poles −1,∞,−i, 0, and i into ξ̆j = −j, j = 1, 2, . . . , 5.

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

xi = [-1, inf , -1i, 0, 1i];

[V, K, H] = rat_krylov(A, b, xi);

xi_new = -1:-1:-5;

[KT, HT, QT, ZT] = move_poles_expl(K, H, xi_new );

3



The poles of a rational Krylov space are the eigenvalues of the lower m ×m part of the
pencil (H̆m, K̆m) in a rational Arnoldi decomposition AV̆m+1K̆m = V̆m+1H̆m associated
with that space [3]. By transforming a rational Arnoldi decomposition we are therefore
effectively moving the poles:

VT = V*QT ';

resnorm = norm(A*VT*KT - VT*HT)/norm(HT)

moved_poles = util_pencil_poles(HT, KT).'

resnorm =

6.8668e-15

moved_poles =

-1.0000e+00 + 1.0476e-16i

-5.0000e-01 - 2.1919e-16i

-3.3333e-01 - 1.7310e-16i

-2.5000e-01 - 2.7182e-16i

-2.0000e-01 + 3.3675e-16i

5 Rational Krylov fitting (RKFIT)

Relevant function: rkfit

RKFIT [3, 4] is an iterative Krylov-based algorithm for nonlinear rational approximation.
Given two families of N ×N matrices {F [j]}`j=1 and {D[j]}`j=1, an N × n block of vectors

B, and an N × N matrix A, the algorithm seeks a family of rational functions {r[j]}`j=1

of type (m+ k,m), all sharing a common denominator qm, such that the relative misfit

misfit =

√√√√∑`
j=1 ‖D[j][F [j]B − r[j](A)B]‖2F∑`

j=1 ‖D[j]F [j]B‖2F
→ min

is minimal. The matrices {D[j]}`j=1 are optional, and if not provided D[j] = IN is assumed.
The algorithm takes an initial guess for qm and iteratively tries to improve it by relocating
the poles of a rational Krylov space.

We now show on a simple example how to use the rkfit function. Consider again the
tridiagonal matrix A and the vector b from above and let F = A1/2.

N = 100;

A = gallery('tridiag ', N);

b = eye(N, 1);

F = sqrtm(full(A));

exact = F*b;

Now let us find a rational function rm(z) of type (m,m) with m = 10 such that ‖Fb −
rm(A)b‖2/‖Fb‖2 is small. The function rkfit requires an input vector of m initial poles
and then tries to return an improved set of poles. If we had no clue about where to place
the initial poles we can easily set them all to infinity. In the following we run RKFIT for
at most 15 iterations and aim at relative misfit ‖Fb − rm(A)b‖2/‖Fb‖2 below 10−10. We
display the error after each iteration.

4



[xi, ratfun , misfit] = rkfit(F, A, b, ...

repmat(inf , 1, 10), ...

15, 1e-10, 'real ');

disp(misfit)

7.8082e-07 1.4769e-10 4.6371e-11

The rational function rm(A)b of type (10, 10) approximates A1/2b to about 10 decimal
places. A useful output of rkfit is the RKFUN object ratfun representing the rational
function rm. It can be used, for example, to evaluate rm(z):

� ratfun(A,v) evaluates rm(A)v as a matrix function times a vector,
� ratfun(A,V) evaluates rm(A)V as a matrix function times a matrix, e.g., setting
V = I as the identity matrix will return the full matrix function rm(A), or

� ratfun(z) evaluates rm(z) as a scalar function in the complex plane.

Here is a plot of the error |x1/2 − rm(x)| over the spectral interval of A (approximately
[0, 4]), together with the values at the eigenvalues of A:

figure

ee = eig(full(A)).';

xx = sort([ logspace (-4.3, 1, 500) , ee]);

loglog(xx,abs(sqrt(xx) - ratfun(xx))); hold on

loglog(ee,abs(sqrt(ee) - ratfun(ee)), 'r.', 'markers ', 15)

axis ([4e-4, 8, 1e-14, 1e -3]); xlabel('x'); grid on

title('| x^{1/2} - r_m(x) |','interpreter ','tex')

10-3 10-2 10-1 100

x

10-14

10-12

10-10

10-8

10-6

10-4

| x1/2 - r
m

(x) |

As expected the rational function rm(z) is a good approximation of the square root over
[0, 4]. It is, however, not a uniform approximation because we are approximately mini-
mizing the 2-norm error on the eigenvalues of A, and moreover we are implicitly using a
weight function given by the components of b in A’s eigenvector basis.

5



Additional features of RKFIT are listed below.

� An automated degree reduction procedure [4, Section 4] is implemented; it takes
place if a relative misfit below tolerance is achieved, unless deactivated.

� Nondiagonal rational approximants are supported; can be specified via an additional
param structure.

� Utility functions are provided for transforming scalar data appearing in complex-
conjugate pairs into real-valued data, as explained in [4, Section 3.5].

For more details type help rkfit. Some of the capabilities of RKFUN are shown in the
following section.

6 The RKFUN class

The rkfun class is the fundamental data type to represent and work with rational func-
tions. It has already been described above how to evaluate an rkfun object for scalar and
matrix arguments by calling ratfun(z) or ratfun(A,v), respectively. There are more
than 20 other methods implemented for rkfun, and a list of all these can be obtained by
typing methods rkfun. Here we provide a complete list with brief descriptions.

basis - Orthonormal rational basis functions of an rkfun.

coeffs - Expansion coefficients of an rkfun.

contfrac - Convert an rkfun into continued fraction form.

diff - Differentiate an rkfun.

disp - Display information about an rkfun.

double - Convert an rkfun into double precision (undo vpa or mp).

ezplot - Easy-to-use function plotter.

feval - Evaluate an rkfun at scalar or matrix arguments.

hess - Convert an rkfun pencil to (strict) upper-Hessenberg form.

inv - Invert an rkfun corresponding to a Moebius transform.

isreal - Returns true if an rkfun is real-valued.

minus - Scalar subtraction.

mp - Convert an rkfun into Advanpix Multiple Precision format.

mrdivide - Scalar division.

mtimes - Scalar multiplication.

plus - Scalar addition.

poles - Return the poles of an rkfun.

poly - Convert an rkfun into a quotient of two polynomials.

power - Integer exponentiation of an rkfun.

rdivide - Division of two rkfuns.

residue - Convert an rkfun into partial fraction form.

rkfun - The rkfun constructor.

roots - Compute the roots of an rkfun.

size - Returns the size of an rkfun.

subsref - Evaluate an rkfun (calls feval).

times - Multiplication of two rkfuns.

type - Return the type (m+k,m) of an rkfun.

uminus - Unary minus.

uplus - Unary plus.

vpa - Convert rkfun into MATLAB's variable precision format.

6



The names of these methods should be self-explanatory. For example, roots(ratfun)
will return the roots of a ratfun, and residue will compute the partial fraction form.
Most methods support the use of MATLAB’s Variable Precision Arithmetic (VPA) or the
Advanpix Multiple Precision toolbox (MP). So, for example, contfrac(mp(ratfun)) will
compute a continued fraction expansion of ratfun using multiple precision arithmetic. For
more details on each of the methods, type help rkfun.<method name>. The RKFUN
gallery provides some predefined rational functions that may be useful. A list of the
options can be accessed as follows:

help rkfun.gallery

GALLERY Collection of rational functions.

obj = rkfun.gallery(funname , param1 , param2 , ...) takes

funname , a case -insensitive string that is the name of

a rational function family , and the family 's input

parameters.

See the listing below for available function families.

constant Constant function of value param1.

cheby Chebyshev polynomial (first kind) of degree param1.

cayley Cayley transformation (1-z)/(1+z).

moebius Moebius transformation (az+b)/(cz+d) with

param1 = [a,b,c,d].

sqrt Zolotarev sqrt approximation of degree param1 on

the positive interval [1,param2 ].

sign Zolotarev sign approximation of degree 2* param1 on

the union of [1,param2] and [-param2 ,-1].

step Unit step function approximation for [-1,1] of

degree 2* param1 with steepness param2.

Another way to create an RKFUN is to make use of MATLAB’s symbolic engine. For
example, r = rkfun(’(x+1)*(x-2)/(x-3)^2’) will create a rational function as ex-
pected. Alternatively, one can specify a rational function by its roots and poles (and
an optional scaling factor) using the rkfun.nodes2rkfun function. For example, r =

rkfun.nodes2rkfun([-1,2],[3,3]) will create the same rational function as above.

7 References

[1] Advanpix LLC., Multiprecision Computing Toolbox for MATLAB, version 3.9.4.10481,
Tokyo, Japan, 2016. http://www.advanpix.com/.

[2] M. Berljafa and S. Güttel. A Rational Krylov Toolbox for MATLAB, MIMS EPrint
2014.56 (http://eprints.ma.man.ac.uk/2390/), Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2014.

[3] M. Berljafa and S. Güttel. Generalized rational Krylov decompositions with an appli-
cation to rational approximation, SIAM J. Matrix Anal. Appl., 36(2):894–916, 2015.

7

http://www.advanpix.com/
http://eprints.ma.man.ac.uk/2390/


[4] M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational approxima-
tion, MIMS EPrint 2015.38 (http://eprints.ma.man.ac.uk/2309/), Manchester Institute
for Mathematical Sciences, The University of Manchester, UK, 2015.

[5] A. Ruhe. Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix
pencils, SIAM J. Sci. Comput., 19(5):1535–1551, 1998.

[6] A. Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III:
Complex shifts for real matrices, BIT, 34:165–176, 1994.

8

http://eprints.ma.man.ac.uk/2309/

	Overview
	Rational Krylov spaces
	Computing rational Krylov bases
	Moving poles of a rational Krylov space
	Rational Krylov fitting (RKFIT)
	The RKFUN class
	References

