Stefan Güttel

The University of Manchester
Department of Mathematics
Alan Turing Building
M13 9PL
Manchester, UK

stefan.guettel@manchester.ac.uk

expand/collapse category

Résumé

My main research interests are in computational mathematics, in particular, in numerical algorithms for high-dimensional problems arising with partial differential equations as well as in data-driven applications.

Brief academic CV

Current roles

Current projects

I enjoy working with industry partners. Companies I have engaged with through Knowledge Transfer Partnerships, PhD/MSc projects, or one-to-one consultancy include Arup, AspenTech, Autotrader, Intel, N Brown Group, Process Integration Ltd, and Schlumberger-Doll Research. (And here's my maths ancestry.)
expand/collapse category

Publications

Google Scholar  |   complete BIB file

Articles in peer-reviewed journals

  1. S. Güttel and J. W. Pearson. A spectral-in-time Newton--Krylov method for nonlinear PDE-constrained optimization. IMA Journal of Numerical Analysis (online first), 2021. BibTeX
  2. S. Güttel and M. Schweitzer. A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices. SIAM Journal on Matrix Analysis and Applications, 42 (1): 83-107, 2021. BibTeX
  3. I. V. Gosea and S. Güttel. Algorithms for the rational approximation of matrix-valued functions. To appear in SIAM Journal on Scientific Computing, 2021. BibTeX
  4. S. Güttel, D. Kressner and K. Lund. Limited-memory polynomial methods for large-scale matrix functions. GAMM-Mitteilungen, 43 (4): e202000019, 2020. BibTeX
  5. S. Elsworth and S. Güttel. ABBA: adaptive Brownian bridge-based symbolic aggregation of time series. Data Mining and Knowledge Discovery, 34: 1175-1200, 2020. BibTeX
  6. S. Elsworth and S. Güttel. The block rational Arnoldi method. SIAM Journal on Matrix Analysis and Applications, 41 (2): 365-388, 2020. BibTeX
  7. C. Qiu, S. Güttel, X. Ren, C. Yin, Y. Liu, Bo Zhang and G. Egbert. A block rational Krylov method for three-dimensional time-domain marine controlled-source electromagnetic modeling. Geophysical Journal International, 218: 100-114, 2019. BibTeX
  8. S. Elsworth and S. Güttel. Conversions between barycentric, RKFUN, and Newton representations of rational interpolants. Linear Algebra and its Applications, 576: 246-257, 2019. BibTeX
  9. S. Güttel and J. W. Pearson. A rational deferred correction approach to parabolic optimal control problems. IMA Journal of Numerical Analysis, 38 (4): 1861-1892, 2018. BibTeX
  10. T. Kinyanjui, Jo Middleton, S. Güttel, J. Cassell and J. Ross. Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units. PLOS Computational Biology, 14 (3): 1-24, 2018. BibTeX
  11. M. Berljafa and S. Güttel. The RKFIT algorithm for nonlinear rational approximation. SIAM Journal on Scientific Computing, 39 (5): A2049-A2071, 2017. BibTeX
  12. M. Berljafa and S. Güttel. Parallelization of the rational Arnoldi algorithm. SIAM Journal on Scientific Computing, 39 (5): S197-S221, 2017. BibTeX
  13. S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. Acta Numerica, 26: 1-94, 2017. BibTeX
  14. V. Druskin, S. Güttel and L. Knizhnerman. Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Review, 58 (1): 90-116, 2016. BibTeX
  15. S. Güttel and Y. Nakatsukasa. Scaled and squared subdiagonal Padé approximation for the matrix exponential. SIAM Journal on Matrix Analysis and Applications, 37 (1): 145-170, 2016. BibTeX
  16. M. Berljafa and S. Güttel. Generalized rational Krylov decompositions with an application to rational approximation. SIAM Journal on Matrix Analysis and Applications, 36 (2): 894-916, 2015. BibTeX
  17. S. Güttel, E. Polizzi, P. Tang and G. Viaud. Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM Journal on Scientific Computing, 37 (4): A2100-A2122, 2015. BibTeX
  18. R-U. Börner, S. Güttel and O. G. Ernst. Three-dimensional transient electromagnetic modeling using rational Krylov methods. Geophysical Journal International, 202 (3): 2025-2043, 2015. BibTeX
  19. A. Frommer, S. Güttel and M. Schweitzer. Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices. SIAM Journal on Matrix Analysis and Applications, 35 (4): 1602-1624, 2014. BibTeX
  20. S. Güttel, R. Van Beeumen, K. Meerbergen and W. Michiels. NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 36 (6): A2842-A2864, 2014. BibTeX
  21. S. Güttel and G. Klein. Efficient high-order rational integration and deferred correction with equispaced data. Electronic Transactions on Numerical Analysis, 41: 443-464, 2014. BibTeX
  22. A. Frommer, S. Güttel and M. Schweitzer. Efficient and stable Arnoldi restarts for matrix functions based on quadrature. SIAM Journal on Matrix Analysis and Applications, 35 (2): 661-683, 2014. BibTeX
  23. E. Jarlebring and S. Güttel. A spatially adaptive iterative method for a class of nonlinear operator eigenproblems. Electronic Transactions on Numerical Analysis, 41: 21-41, 2014. BibTeX
  24. S. Güttel and J. Pestana. Some observations on weighted GMRES. Numerical Algorithms, 67 (4): 733-752, 2014. BibTeX
  25. S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection. GAMM-Mitteilungen, 36 (1): 8-31, 2013. BibTeX
  26. S. Güttel and L. Knizhnerman. A black-box rational Arnoldi variant for Cauchy--Stieltjes matrix functions. BIT Numerical Mathematics, 53 (3): 595-616, 2013. BibTeX
  27. P. Gonnet, S. Güttel and L. N. Trefethen. Robust Padé approximation via SVD. SIAM Review, 55 (1): 101-117, 2013. BibTeX
  28. M. J. Gander and S. Güttel. PARAEXP: A parallel integrator for linear initial-value problems. SIAM Journal on Scientific Computing, 35 (2): C123-C142, 2013. BibTeX
  29. S. Güttel and G. Klein. Convergence of linear barycentric rational interpolation for analytic functions. SIAM Journal on Numerical Analysis, 50 (5): 2560-2580, 2012. BibTeX
  30. B. Beckermann and S. Güttel. Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions. Numerische Mathematik, 121 (2): 205-236, 2012. BibTeX
  31. M. Eiermann, O. G. Ernst and S. Güttel. Deflated restarting for matrix functions. SIAM Journal on Matrix Analysis and Applications, 32 (2): 621-641, 2011. BibTeX
  32. B. Beckermann, S. Güttel and R. Vandebril. On the convergence of rational Ritz values. SIAM Journal on Matrix Analysis and Applications, 31 (4): 1740-1774, 2010. BibTeX
  33. M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel. A generalization of the steepest descent method for matrix functions. Electronic Transactions on Numerical Analysis, 28: 206-222, 2008. BibTeX
  34. M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions. Linear Algebra and its Applications, 429 (10): 2293-2314, 2008. BibTeX

Peer-reviewed conference proceedings

  1. E. Poupard, W. P. Heath and S. Güttel. A Hamiltonian decomposition-based splitting method for interior point solvers in model predictive control. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control, pages 4337-4342, IEEE, 2019. BibTeX
  2. M. J. Gander, M. Petcu and S. Güttel. A nonlinear ParaExp algorithm. In Domain Decomposition Methods in Science and Engineering XXIV, pages 261-270, Springer-Verlag, Berlin, 2019. BibTeX
  3. T. D. Butters, S. Güttel, J. L. Shapiro and T. J. Sharpe. Automatic real-time fault detection for industrial assets using metasensors. In Proceedings of the 2015 Asset Management Conference, pages 1-5, The Institute of Engineering and Technology, 2015. BibTeX
  4. T. D. Butters, S. Güttel and J. L. Shapiro. Detecting and reducing redundancy in alarm networks. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), pages 1224-1229, IEEE, 2015. BibTeX
  5. T. D. Butters, S. Güttel, J. L. Shapiro and T. J. Sharpe. Statistical cluster analysis and visualisation for alarm management configuration. In Proceedings of the 2014 Asset Management Conference, pages 1-6, The Institute of Engineering and Technology, 2014. BibTeX
  6. S. Güttel and L. Knizhnerman. Automated parameter selection for rational Arnoldi approximation of Markov functions. In Proceedings in Applied Mathematics and Mechanics (PAMM), pages 15-18, Wiley-VCH Verlag, 2011. BibTeX
  7. S. Güttel. A parallel overlapping time-domain decomposition method for ODEs. In Domain Decomposition Methods in Science and Engineering XX, pages 483-490, Springer-Verlag, Berlin, 2013. BibTeX

Theses

  1. S. Güttel. Rational Krylov Methods for Operator Functions. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Germany, 2010. BibTeX

  1. S. Güttel. Convergence Estimates of Krylov Subspace Methods for the Approximation of Matrix Functions Using Tools from Potential Theory. Master's Thesis, Technische Universität Bergakademie Freiberg, Germany, 2006. BibTeX

Technical reports

  1. V. Druskin, S. Güttel and L. Knizhnerman. Model order reduction of layered waveguides via rational Krylov fitting. Technical Report 2021.2, The University of Manchester, UK, 2021. BibTeX
  2. G. M. Negri Porzio, S. Güttel and F. Tisseur. Robust rational approximations of nonlinear eigenvalue problems. Technical Report 2020.24, The University of Manchester, UK, 2020. BibTeX
  3. S. Elsworth and S. Güttel. Time series forecasting using LSTM networks: A symbolic approach. Technical Report arXiv:2003.05672v1, The University of Manchester, UK, 2020. BibTeX
  4. E. Poupard, W. P. Heath and S. Güttel. A Hamiltonian decomposition for fast interior-point solvers in model predictive control. Technical Report 2020.6, The University of Manchester, UK, 2020. BibTeX
  5. M. Berljafa, S. Elsworth and S. Güttel. A Rational Krylov Toolbox for MATLAB. Technical Report 2014.56, The University of Manchester, UK, 2014. BibTeX
expand/collapse category

Teaching

Course materials are available on Blackboard.
expand/collapse category

Other